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Abstract 

Vehicles in developing countries have wide variations in their static and dynamic characteristics, 

and drivers tend to not follow lane discipline. Models for driving behavior under such disordered 

traffic conditions need to include the vehicle dynamics and their interactions with the surrounding 

environment. Calibration of those models is necessary to evaluate their predictive power and 

suitability for analyzing traffic flow under disordered traffic. The present study aims to calibrate a 

longitudinal dynamics model, the High-Speed Social-Force Model (HSFM) using a vehicle 

trajectory dataset collected from Chennai city. The HSFM was calibrated by minimizing the 

deviations between the simulated and observed longitudinal coordinates of vehicles using a genetic 

algorithm. The observed and simulated vehicle trajectories were compared using a goodness of fit 

function of the positions. The convergence of the objective function has been illustrated with the 

help of fitness landscapes. The calibration errors were found to be within the acceptable range and 

the optimal parameter values were found to be consistent. The outcomes of the study indicate that 

the model can capture the influence of non-overlapping leaders under disordered traffic conditions. 
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1. Introduction and Background 

Modeling traffic flow is generally carried out in two ways, modeling the aggregate characteristics 

of a traffic stream (macroscopic) and modeling the individual vehicle dynamics (microscopic). 

Microscopic traffic flow models constitute the most suitable model class to simulate and 

understand the dynamics of heterogeneous vehicles and the interactions of their drivers with other 

vehicles and the environment, particularly for disordered traffic flow. Traditionally, microscopic 

models are classified into two categories: car-following and lane-changing models. The car-

following models are used to model the vehicular movements in the longitudinal direction whereas 

lane-changing models replicate the lateral movements [1]. The car-following models are 

categorized as stimulus-response or GHR (Ghazis-Herman-Rothary) models, psychophysical 

models, collision-avoidance models, safety distance models, fuzzy logic-based models, optimal 

velocity models, and other variants [1]. The basic assumption of these models is that the vehicle 

moves in the middle of the lane and therefore, the leader and follower are present in the same lane 

[2].  

In the case of ordered traffic, the distribution of vehicles’ lateral positions inside the lane follows 

essentially a normal distribution and there is no need to include the lateral displacement between 

leader and follower to the model input. However, this normality is lost in disordered traffic [3]. 

Disordered traffic refers to the wide mix of different vehicle types such as cars, two-wheelers, 

trucks, buses, auto-rickshaws, etc. utilizing the complete roadway without lane discipline, as 

observed in South-Asian countries like India. Under such conditions, the longitudinal acceleration 

of the follower depends not only on the longitudinal gap to the immediate leader and the speeds 

but also on the lateral displacement (staggered leaders) and possibly on several leaders. There are 

even situations where it is difficult to identify the most relevant leader since, due to the very 

dynamic nature of such traffic flow with many overtaking and passing maneuvers, not only the 

lateral displacement and the longitudinal gap but also the relative speed determines the leader 

having the highest influence on the follower [4,5]. 

A car-following model is said to be complete if it can capture the appropriate longitudinal 

acceleration in all possible traffic situations including free acceleration, free cruising, approaching, 

steady-state and dynamic following, stopped traffic, and highly dynamic emergency situations [6]. 

Simple complete models include the Optimal Velocity Model, the Gipps model, and the Intelligent 

Driver Model (IDM). From these models, only the IDM satisfies further requirements such as 

having realistic accelerations and being accident-free [6]. However, it is only applicable to ordered 

lane-based traffic flow. 

The calibration of microscopic traffic flow models is a significant step that needs to be carried out 

to predict vehicular movements and evaluate the applicability of these models in the traffic stream. 

While there are many works on calibrating lane-based car-following models (see, e.g., [7] or [8]), 

few researchers attempted to formulate models for disordered traffic conditions and calibrate their 

longitudinal dynamics.  In these attempts, the lane-based car-following models are usually 

augmented by a simple factor based on the lateral displacement and restricted to proper car-

following, i.e., no situations where the nearest vehicles are on the side (no-following mode). This 

includes calibrating the modified General Motors model [9], the Gipps model [10,11], the 

Wiedemann model [12,13], the Optimal velocity model [14,15], and the Intelligent driver model 

[16,17]. None of the above investigations included non-following modes where there could be 

different leaders influencing the subject vehicle at different time instances. Moreover, the above 
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calibrations were based on real-world trajectory data for very short sections (250 m at most) and 

carried out using macroscopic variables as the measure of performance only probing for the 

aggregated behavior rather than the individual driving behavior. 

To our knowledge, there are only two attempts made to model including all situations that may 

arise in disordered traffic including no-following situations, namely the  High-Speed Social Force 

Model (HSFM[18]) and the Intelligent Agent Model (IAM [19]) which improved the HSFM by 

simplifying it and also generalizing it by considering social forces from all vehicles in the 

neighborhood, including the followers. When only considering the longitudinal dynamics and 

ignoring the social forces of the followers, the HSFM is equivalent to the IAM. 

In this study, we microscopically calibrate the HSFM specialized to the IDM for longitudinal 

dynamics using trajectory data collected at an urban arterial in Chennai city under disordered 

traffic conditions. We verified that the calibrated parameter values correspond to the respective 

global minimum of the vehicle’s position-related objective function. While the calibrated 

parameters of the car-following component were consistent with past investigations, we also 

estimate, to our knowledge for the first time, model parameters related to lateral offsets of the 

leader.  

The major contributions of this study are the following: 1) Calibrating, for the first time, all the 

cases of longitudinal movement such as laterally overlapping (car-following behavior) and non-

overlapping cases, 2) including changing leaders and dynamically identifying the most interacting 

vehicle, 3) calibrating to a microscopic measure of performance using a novel protocol giving 

insight into individual driver responses to a laterally changing environment, 4) using significantly 

longer trajectory data collected under disordered traffic conditions than that used in the previous 

studies. 

The formulations involved in the HSFM are discussed in the next section. The third section 

describes the data used in the study and the calibration methodology, and the fourth section 

discusses the results followed by the conclusion. 

 

2. High-Speed Social-Force Model  

The High-Speed Social-Force Model (HSFM) is developed based on the concept of social forces 

to model the directed flow of high-speed self-driven particles such as vehicles in traffic stream 

[18]. Figure 1 presents the formulation of the HSFM which predicts the longitudinal acceleration 

of the vehicle for the future time step. The model consists of three components: self-driven 

acceleration, interaction force, and external forces given by the following equation: 

 
𝑑𝑣𝑖

𝑑𝑡
= 𝑓𝑖

𝑠𝑒𝑙𝑓
+ 𝑓𝑖𝑙′ + ∑ 𝑓𝑖𝑏𝑏                                             (1) 

Where, 

𝑑𝑣𝑖

𝑑𝑡
= 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 

𝑓𝑖
𝑠𝑒𝑙𝑓

= 𝑆𝑒𝑙𝑓 𝑑𝑟𝑖𝑣𝑒𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑓𝑖𝑙′ = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑓𝑖𝑏 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠 𝑠𝑢𝑐ℎ 𝑎𝑠  𝑟𝑜𝑎𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 (𝑏) 
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𝑙′ = 𝑀𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑙𝑒𝑎𝑑𝑒𝑟    

 

In Equation 1, the 𝑓𝑖
𝑠𝑒𝑙𝑓

 and 𝑓𝑖𝑙′ are computed using Intelligent Driver Model given by the 

following equation:  

𝑎𝐶𝐹(𝑠𝑖𝑙 , 𝑣𝑖 , 𝑣𝑙) = 𝑎𝐶𝐹,𝑓𝑟𝑒𝑒(𝑣𝑖) + 𝑎𝐶𝐹,𝑖𝑛𝑡(𝑠𝑖𝑙, 𝑣𝑖, 𝑣𝑙) 

= 𝑎 [1 − (
𝑣𝑖

𝑣0
)
𝛿

− (
𝑠∗(𝑣𝑖, 𝑣𝑙)

𝑠𝑖𝑙
)

2

]                                             (2) 

Where, 

𝑎 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑣0 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

𝑣𝑖 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖  
𝑣𝑙 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑒𝑎𝑑𝑒𝑟 𝑙  

𝑠∗(𝑣𝑖, 𝑣𝑙) = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠0 + 𝑚𝑎𝑥(0, 𝑣𝑖𝑇 + 
𝑣𝑖(𝑣𝑖 − 𝑣𝑙)

2√𝑎𝑏
) 

𝑠𝑖𝑙 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑎𝑛𝑑 𝑙𝑒𝑎𝑑𝑒𝑟 𝑙 = 𝑥𝑙 − 𝑥𝑖 − 𝑙𝑣𝑒ℎ𝑙   
𝑙𝑣𝑒ℎ𝑙 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑒𝑎𝑑𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑠0 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑝𝑎𝑐𝑖𝑛𝑔  
𝑇 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝  

𝑏 = 𝐶𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒  𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

The first part of the Equation (2) is the acceleration of vehicle when it is free to move without any 

interaction with the surroundings. It is calculated using the Intelligent Driver Model under free 

acceleration condition as given below: 

𝑓𝑖
𝑠𝑒𝑙𝑓

= 𝑎𝐶𝐹,𝑓𝑟𝑒𝑒(𝑣𝑖) = 𝑎𝐶𝐹(∞, 𝑣𝑖, 𝑣𝑙)                                                       (3) 

The interaction of the vehicle with the leaders is considered in the second part of the Equation (2). 

The identification of the leaders is a significant part of the HSFM. Initially, the threshold up to 

which other vehicles may have an influence on the vehicle (Influencing Length) is computed based 

on maximum desired speed and desired time gap as shown in equation 4.  Any vehicle over the 

entire road width that is longitudinally ahead of the subject vehicle within the influencing length 

is identified as a potential leader (Figure 2).  

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑛𝑔 𝐿𝑒𝑛𝑔𝑡ℎ = 𝐿 + (𝑣0𝑇 + 0.5
𝑣0

2

𝑏
)   (4) 

Where L=vehicle length in m; 𝑣0= maximum desired speed (considered as 25 m/s); T= desired 

time gap (taken as 1 s); b = deceleration (considered as 4 m/s2) 

Then, the interaction force (acceleration) 𝑓𝑖𝑙 of each potential leader is computed for all potential 

leaders 𝑙 and the vehicle 𝑙′ causing the most negative force (largest deceleration) is selected as the 

only leader. The interaction force is equal to the IDM interaction acceleration valid for strict car-

following multiplied with the lateral attenuation factor 𝛼(∆𝑦𝑖𝑙) reflecting a decreasing effect for 

lateral displacements of the leader, 
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𝑓𝑖𝑙(∆𝑥𝑖𝑙, ∆𝑦𝑖𝑙, 𝑣𝑖 , 𝑣𝑙) = 𝑎𝐶𝐹,𝑖𝑛𝑡(∆𝑥𝑖𝑙, 𝑣𝑖 , 𝑣𝑙)𝛼(∆𝑦𝑖𝑙)                                         (5) 

with 

𝑎𝐶𝐹,𝑖𝑛𝑡(∆𝑥𝑖𝑙, 𝑣𝑖, 𝑣𝑙) = 𝑎𝐶𝐹(∆𝑥𝑖𝑙 − 𝑙𝑣𝑒ℎ𝑙 , 𝑣𝑖 , 𝑣𝑙) − 𝑎𝐶𝐹,𝑓𝑟𝑒𝑒(𝑣𝑖)                              (6) 

and  

𝛼(∆𝑦𝑖𝑙) = min {exp (−
𝑠𝑖𝑙

𝑦

𝑠0
𝑦) , 1}                                                                 (7) 

The lateral attenuation factor 𝛼 with the lateral attenuation scale 𝑠0
𝑦
 as a model parameter is 

formulated based on the assumption that the influence of leader varies exponentially with a 

positive lateral gap 𝑠𝑖𝑙
𝑦

= |∆𝑦𝑖𝑙| − (𝑤𝑖 + 𝑤𝑙)/2 between leader 𝑙 and the subject vehicle 𝑖 (𝑤𝑖and 

𝑤𝑙 are the vehicle widths, see Fig. 2) while 𝛼 = 1 if the leader is longitudinally overlapping with 

the subject vehicle 𝑠𝑖𝑙
𝑦

< 0 since, then, a negative longitudinal gap (𝑔𝑎𝑝 =  𝑋𝑙𝑒𝑎𝑑𝑒𝑟 − 𝑋𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 −

𝐿𝐿𝑒𝑎𝑑𝑒𝑟) will mean a crash. 

 
Figure 1 Formulation of HSFM  
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Figure 2 Identification of potential leaders  

(Note: i - Subject vehicle, l – Leader, l’ - Most influencing leader) 

The last part of the social force model consists of the influence due to external forces such as traffic 

signals, road boundaries and other obstacles [18]. Since, this study deals with modeling vehicular 

movements away from intersections, the influence of road boundaries has been taken into 

consideration, only. Similarly, to the lateral attenuation of the force from other vehicles, the 

boundary effect decreases exponentially with the lateral distance 𝑏 ± 𝑦 to the boundaries where 𝑏 

is the half-width of the road, and 𝑦 is the lateral distance from the road center. For both left and 

right boundaries together, we thus obtain  

∑ 𝑓𝑖𝑏𝑏 = 𝑓𝑏

[
 
 
 
 

−𝑒
(−(

𝑏+𝑦

𝑠
0𝑏
𝑦 ))

− 𝑒
(−(

𝑏−𝑦

𝑠
0𝑏
𝑦 ))

]
 
 
 
 

              (8) 

Where, −𝑓𝑏 denotes the repulsive force if the vehicle center is immediately at one of the boundaries 

and 𝑠0𝑏
𝑦

 denotes the road boundary scale. Notice that, unlike the expression for the vehicle-vehicle 

interaction, there is no cutoff for negative lateral gaps 𝑏 − |𝑦| − 𝑤𝑖 2⁄  reflecting the fact that the 

situation gets worse with the degree the vehicle leaves the road. 

 

3. Calibration Framework 

 

Calibration refers to the determination of the model parameters such that the simulation is closest 

to the observations according to a goodness-of-fit function (GoF) based on a measure of 

performance (MoP) [20]. There are two approaches generally followed for calibration of 

microscopic models namely, local and global. The local approach makes predictions for only one 

future time step. For acceleration-based models, this means comparing the observed acceleration 

with the acceleration as modeled for the actual observed speeds and positions, step by step. The 

global approach predicts the entire vehicle trajectory based on initial state variables. Since the 

system dynamics correlates future position and speed values with the present acceleration returned 

by the model, the global approach includes more aspects of traffic flow and is more robust to 

measurement errors [6] and therefore has been adopted in the current study. The data used for 

calibration and the simulation set-up is discussed in the following subsection. 
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3.1 Data 

We use vehicle trajectory data collected on a six-lane divided urban arterial road in Chennai city 

under disordered traffic conditions (wide mix of vehicles and lane-free traffic; the drivers generally 

did not obey the visible lane markings). Videos were obtained from four UAVs (unmanned aerial 

vehicles), simultaneously deployed to cover a length of 605 m over the road stretch. The vehicles 

were tracked in every frame of the videos using a semi-automated tool, and the trajectories from 

the four UAVs were stitched together. The average flow in the study section is 6720 veh/h which 

corresponds to moderate traffic conditions. The traffic stream comprises 50% two-wheelers, 40% 

cars, and 10% other categories (auto-rickshaws, buses, trucks, and light commercial vehicles).  In 

total, 856 trajectories were extracted at a 0.5 sec time interval. Even for such a comparatively large 

sample time interval, large acceleration noise is produced by the double-time differentiation of the 

primary position data. To remove most of the noise and remain kinematically consistent, the 

positional data were smoothed by a symmetric exponential moving average filter (sEMA) of kernel 

width 0.5 s. Speeds and accelerations were obtained by numerical differentiation using the central 

difference method without further smoothing. Further details of the data are available in [15].  

This study is mainly focused on the longitudinal dynamics of vehicles and therefore, it was ensured 

that only vehicle trajectories without significant lateral movements were considered. Specifically, 

the trajectories were filtered for a maximum lateral deviation of 0.5 m from the initial lateral 

position and for a minimum time duration of 30 s [21]. Figure 3 shows an example of such a 

trajectory. In total, 102 samples have been obtained among which cars and two-wheelers are 

dominant. It can be seen from Figure 3b that the trajectory data is essentially free from lateral 

movements. Notice that each of these trajectories may have more than one leader during the 

sampled time interval. 

(a) Longitudinal Coordinates     (b) Lateral Coordinates 

Figure 3 Visualization of a filtered sample trajectory 

3.2 Simulation Set-up 

The simulation of a trajectory here refers to predicting the longitudinal acceleration, speed, and 

position for all time instants 𝑡= 𝑖𝑑𝑡, 𝑑𝑡 =0.5 s, where data points exist. At 𝑡 =0, the simulated 
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vehicle is initialized to the position (𝑥(0), 𝑦(0) and the longitudinal speed 𝑣(0) given by the data.  

For each time step 𝑡= 𝑖𝑑𝑡, the complete environment, i.e., all other trajectories as well as the lateral 

position of the considered trajectory is updated by the data (Figure 4) while the longitudinal 

acceleration 𝑎(𝑡)= 𝑑𝑣 (𝑡) 𝑑𝑡⁄  is simulated using the High-speed Social Force model (HSFM). To 

prepare for the next time step 𝑡 +𝑑𝑡, the speed and longitudinal position is calculated using the 

ballistic update rules  𝑣(𝑡 + 𝑑𝑡) = 𝑣(𝑡) + 𝑎(𝑡)𝑑𝑡, 𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑣(𝑡)𝑑𝑡 + 0.5𝑎(𝑡)𝑑𝑡2, 

respectively, 𝑎(𝑡) = 𝑑𝑣𝑖 𝑑𝑡⁄   is given by Equation (1). 

The calibration process is defined by the Measure of Performance (MoP), the objective function 

or goodness-of-fit function (GoF), and the optimization algorithm. Possible microscopic MoPs 

include position, speed, acceleration, relative speed (speed difference), and the space gap. In this 

study, we will use the longitudinal position of the vehicle for the following reasons. (i) In contrast 

to the relative speed or the space gap, it is not sensitive to changes of the leader vehicle, so it is 

differentiable and easier to calibrate. Moreover, it does not use non-measurable internal model 

variables (which leader to use, i.e., which gap to take is a model property). (ii) In contrast to the 

speed and acceleration, the position is directly observable and takes care of the serial correlations 

implicit in the dynamics, and it is therefore to be preferred [22]. Regarding the GoF, using the 

position instead of the gap as MoP comes at the price of needing to use absolute errors because 

relative errors are not sensibly defined for positions. Specifically, we use the Root Mean Square 

Error (RMSE) as the GoF in this study (Equation 8).  

 

𝐸 = √∑(𝑥𝑖 − 𝑥𝑖
𝑜𝑏𝑠)

2
𝑛⁄

𝑛

𝑖=1

                                                                    (9) 

Where, 

𝐸 = 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 

𝑥𝑖 , 𝑥𝑖
𝑜𝑏𝑠 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑡 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑛 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙e 

 

Figure 4 visualizes the calibration process. At t=326 s the subject vehicle is initialized with the 

data. At each simulation step, the most influential leader is identified, and the subject’s longitudinal 

position is determined by the HSFM with the ballistic update while the lateral position is set by 

the data. Between t=327.5 and 328 s, the most influential leader changes and the positive positional 

error increasing before the leader change is reduced, presumably by the stronger repulsive effect 

of the new leader. The space gap vs time plots illustrate the cases of vehicles having more than 

one leader (Figure 9). It can be observed that there is discontinuity in space gap curve due to a 

change of the most influencing leader. This shows us that the longitudinal position of the vehicle 

is a better MoP than the longitudinal gap. Moreover, since the longitudinal gap depends on the 

most influential leader, i.e., on the model, it cannot be observed in the data. 

In order to find the solution for the non-linear optimization problem of minimizing the RMSE 

(Equation 8) with respect to the parameters thereby performing the calibration, genetic algorithm 

(GA) is applied [6]. Several researchers have adapted GA for calibrating driving behavior models 
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in the past [14,15,23-25]. For each sample trajectory, an individual set of optimal/calibrated 

parameters was determined thus considering inter-driver variations. The boundaries of allowed 

HSFM parameters ranges (Table 1) were defined based on the literature [18,21].  

 Figure 4 Depiction of the leaders identified at different time steps (t) for a subject vehicle using 

HSFM 
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4. Results and Discussions 

4.1 Calibration 

The calibration of HSFM was carried out for all the filtered trajectories. Since we have filtered the 

trajectories for small lateral displacements, boundary parameters (𝑠0𝑏
𝑦

 and 𝑓𝑏) cannot be identified 

for the vehicles driving at nearly constant lateral distance to the boundary and can be confounded 

with any other constant effect such as that coming from the desired speed. To overcome this, the 

value of 𝑠0𝑏
𝑦

  was set to the constant value 𝑠0𝑏
𝑦

= 0.15 provided by the literature [18]. To estimate 

𝑓𝑏 at least globally, we have performed a pool calibration including several trajectories with 

different lateral positions and boundary values as [0.1,5] m/s2. The result 𝑓𝑏=2.4 m/s2 which was 

then used as constant for the individual calibration of trajectories. Figure 5 shows the variation of 

boundary acceleration with the lateral position of vehicles at this fb value, computed using 

Equation (7). The longitudinal deceleration is higher when the vehicle is placed at the boundaries 

and the values are reduced rapidly towards zero in an exponential manner.  

 

Figure 5 Variation of boundary acceleration with lateral position of the vehicle at optimal 𝑓𝑏 value 

The frequency distributions of the individually calibrated HSFM parameters are shown in Figure 

6 and the summary statistics are provided in Table 1. The average values of parameters are 

reasonable and comparable with the previous studies [18]. The mean RMSE of the position is 

found to be 1.05 m, which is reasonable and comparable with the results from a previous study by 

Chaudhari et al. [13] where the RMSE of the position is reported as 1.692 m. This value is valid 

for the global approach of calibration, which involves comparing a complete data trajectory with 

a simulated trajectory. Please refer to Supplemental Material Videos 1 and 2 for an illustration of 

the calibration capability of the model. The range of most of the desired speed values i.e., 10-20 

m/s (Figure 6a), is lower than that observed in homogenous traffic [23] which is expected due to 

the presence of different types of vehicles and non-lane-based traffic. The average minimum 

spacing is approximately 1.4 m (Figure 6b) which is lower compared to ordered traffic [21]. This 

is reasonable and expected since driver characteristics and vehicle types allow the vehicles to 

maintain lower longitudinal gaps. 
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                      (a)                     (b)                 (c)  

         (d)                        (e)                 (f) 

Figure 6 Distribution of Optimal Parameters in calibrated HSFM 

Table 1 Descriptive Statistics of Optimal Parameters of HSFM  

Model Parameters 
Boundary 

Values 
Mean Median 

Standard 

Deviation 
Minimum Maximum 

Desired Speed (𝑣0), 

m/s 
[1,30] 16.987 15.891 6.134 4.969 29.761 

Desired Spacing (𝑠0), 

m 
[0.1,5] 1.405 1.036 1.276 0.107 4.926 

Comfortable 

Deceleration (𝑏), m/s2 
[0.1,6] 1.896 1.076 1.906 0.101 5.987 

Maximum 

Acceleration (𝑎), m/s2 
[0.1,6] 2.399 1.661 2.084 0.115 5.982 

Desired Time Gap (𝑇), 

s 
[0.1,6] 1.055 0.732 1.069 0.104 5.806 

Lateral attenuation 

scale (𝑠0
𝑦
), m 

[0.1,3] 0.944 0.676 0.793 0.105 2.933 

RMSE, m - 1.051 0.748 0.972 0.209 6.858 
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The desired time gap values being mostly lesser than 1 s (Figure 6e) just reflects a different driving 

behaviour. A possible reason is that collisions are not considered to be as serious events as in 

Western countries. The comfortable deceleration and the acceleration values mostly lie below 2 

m/s2[14,21]. However, the calibration of some trajectories returns very high acceleration and 

deceleration values at or near the allowed limit meaning that these parameters cannot be identified 

for these instances. Most of the values of the lateral attenuation scale (s0y) were found to be less 

than 1 m (Figure 6f) meaning that such leaders do not exert much repulsive social force, i.e., a 

lateral gap of 1 m or less is considered as a normal situation.  

The distribution for parameters such as desired speed, minimum spacing, and comfortable 

deceleration for different types of follower vehicles such as TW and Car (Figure 7) are also plotted 

to assess the difference in parameter distributions and values, and the proportion of other types of 

following vehicles are small in the data and hence omitted.  It is observed that the desired speed 

of cars is slightly right skewed as it is expected that the cars have desired speeds generally higher 

than two-wheelers. The distribution of comfortable deceleration and minimum spacing is not 

significantly different for two-wheelers and cars. To compare and understand the parameter 

distribution of different types of following vehicles, more data is needed. 

 

 

 

 

 

 

 

(a) Two-wheelers 

 

 

 

 

 

 

(b) Cars 

Figure 7 Distribution of Selected Parameters for Two-wheelers and Cars 

In general, the following procedure based on kernel smoothing can be used to simulate the 

heterogeneous traffic using parameter distributions of different types of vehicles including 

correlations: 
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• To incorporate appropriate standard deviations and correlation structures into the kernel, a 

six-dimensional multivariate Gaussian kernel density may be used. 

 

• To determine the kernel, one first determines the components of the sample covariance 

matrix Σ as follows   

Σ𝑗𝑘 =
1

𝑛−2
∑ (𝛽𝑖𝑗 − 𝛽𝑗)(𝛽𝑖𝑘 − 𝛽𝑘)

𝑛
𝑖=1          (10) 

Where 𝛽𝑖𝑗 is the parameter estimate 𝛽𝑗 as calibrated to the follower trajectory i, and  𝛽𝑗 the 

mean overall trajectories.  

• Depending on the number d of the dimensions (parameters) and number n of data points 

(i.e., calibrated trajectories), the so-called bandwidth matrix is chosen as a scaled downed 

covariance matrix,  

  𝐻 = 𝑛− 
2

𝑑+4 Σ                   (11) 

leading to the Gaussian kernel density  

𝑓𝑘(𝛽) = (2𝜋)
−𝑑

2 |𝐻|
1

2𝑒
1

2
𝛽𝑇𝐻−1𝛽

                   (12) 

• The estimated density function of the parameter estimates is then given by 

          𝑓(𝛽) =
1

𝑛
∑ 𝑓𝑘(𝛽 − 𝛽𝑖)𝑖                                 (13) 

• Then, use Monte Carlo methods to sample from this distribution in a simulation. 

When using these parameter distributions for simulations of heterogeneous traffic including 

correlations, one needs more data points to approximate the density of the true parameter 

distribution (generally not Gaussian) using kernel density estimates. 

To verify that global minima were found, we checked the results by plotting fitness landscapes 

around the calibrated parameter values [8]. In Figure 8, contour plots are displayed for some pairs 

of the parameters of HSFM (desired speed, maximum acceleration, desired time gap, comfortable 

deceleration, and minimum spacing). In each of the contour plots, the remaining parameters were 

kept constant at their respective calibrated values. While such fitness landscapes can only check 

local minima, the large parameter ranges for which the fitness function has been evaluated give 

evidence that the true global minimum has been found by the GA. Further evidence is provided by 

observing that the GA results do not depend on the initial guess [8].  

In fitness landscapes in Figure 8, it is observed that all the optimal parameter values converged to 

the global minima and are within the bounded region. In the example shown in Figure 9, however, 

the value of 𝑣0 is very large and possibly unbounded. This can be explained by observing that the 

data contain very few points with gaps larger than 40 m which can be attributed to free flow (Figure 

8b). Hence, the desired speed is not identified and any value above a certain minimum essentially 

gives the same dynamics. Notice that this may also apply to other parameters. For example, the 

acceleration and deceleration parameters are not identified if there are no sufficiently long 

acceleration or deceleration episodes in the data, the parameters 𝑠0 and 𝑇 cannot be identified if 

there is only free traffic, the boundary parameters play no role if a trajectory never approaches a 

road boundary, and the lateral attenuation parameter cannot be determined if there are no variable 
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lateral offsets to the leaders. Generally, if certain situations are not included in the data, the 

corresponding parameters are unobservable and must not be calibrated [8]. Since it is practically 

difficult to obtain trajectories containing all traffic situations, it is suggested that the missing 

situations need to be determined before calibration descriptively and the pertaining parameter is 

set to aspects of the descriptive statistics (e.g., the desired speed to the data maximum), or fixed 

standard values. 

 

Figure 8 Fitness landscapes for calibrated HSFM parameters with bounded minima (Note: The 

black circle in fitness landscape indicates the optimal parameters)  

(a) Contour Plot               (b) Gap v/s time plot 

Figure 9 Fitness landscapes for calibrated HSFM parameters with unbounded minimum 
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Finally, we emphasize that the proposed calibration protocol allows for several leaders during the 

trajectory time interval which is often observed frequently. Figure 10 displays, in addition to the 

calibration result, the longitudinal and lateral gap between the subject vehicle and the 

instantaneous most influencing leader for two, three, and four leaders (Figures 10a, 10b, and 10c, 

respectively). In Figure 10a, the most influential leader changes at t=446 s and in Figure 10b there 

are three different most influencing leaders for the time intervals 287 s to 310 s, 310 s to 316 s, 

and 316 s to 325 s, respectively. From the plots, it is understood that the calibrated HSFM performs 

well in the prediction of longitudinal dynamics irrespective of the following or non-following 

behavior. 

 

(a) Two Leaders 

(b) Three Leaders 

(c) Four Leaders 

Figure 10 Comparison of simulated and observed longitudinal position for samples with 

different leaders throughout the movement 
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5. Conclusions 

The present study aims to calibrate the High-speed Social-Force model (HSFM) to model the 

longitudinal dynamics of vehicles under disordered traffic conditions. The trajectory data used for 

the calibration purpose has been collected at a road section in Chennai city with a study stretch of 

length 610 m which is significantly longer than that of past studies of disordered traffic and allows, 

for the first time, a calibration of the behavior of individual followers including the parameters for 

the response to a lateral displacement, i.e., leader identification and the transition from following 

to non-following behavior.  

This study is mainly focused on the longitudinal dynamics of vehicles and therefore, it was ensured 

that only vehicle trajectories without significant lateral movements were considered for 

calibration. The longitudinal position of the vehicle was used as the measure of performance and 

the RMS error was minimized using a genetic algorithm to obtain the calibrated HSFM parameters. 

The calibration errors are within the acceptable range. The parameters were also verified for the 

attainment of the global minima by plotting the fitness landscapes. It was found that the parameters 

attained the global optima successfully. However, if certain situations are not included in the data 

due to incompleteness, the corresponding parameters are unobservable and must not be calibrated.  

The vehicle-type-based calibration was not considered due to the constraints in the quantity of the 

data. To address this, in a recent study by the authors [26], a long trajectory dataset of 560 m road 

length has been created by UAV cameras with a higher time resolution of 0.04 s.  Moreover, 

vehicle detection is carried out using a fully automated tool developed using deep learning 

algorithms. The future scope of the study is to integrate the calibrated longitudinal dynamics model 

with lateral movement models that would be incorporated into the simulation models for realistic 

outcomes. 
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