Matched line

GPS vertices

TECHNISCH UNIVERSITA

5. Is the p value dead? Frequentist vs. Bayesian inference

- 5.1 Introduction: Frequentist vs. Bayesian inference
- 5.2 General Methodics
- 5.3 Discrete Quantities and Observations5.3.1 Example: Covid-19 Tests
- 5.4 Binary-Valued Quantities and Continuous Observations5.4.1 Example: Map Matching
- 5.5 Continuous Quantities and Observations
 - 5.5.1 Example: Gausian Priors and Observations
- 5.6 Conclusion

Rejected route
(implied speed too fast)

5.1 Introduction: Frequentist vs. Bayesian inference

▶ The classic **frequentist's** approach calculates the probability that the test function T is further away from H_0 , (in the extreme range E_{data}) than the data realisation provided H_0 is marginally true:

$$p = P(T \in E_{\mathsf{data}}|H_0^*) \ge P(T \in E_{\mathsf{data}}|H_0)$$

- The Bayesian inference tries to caculate what is actually interesting: The probability of H_0 given the data.
- If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating $T \in E_{\text{data}}$ as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \leq p\,\frac{P(H_0)}{P(E_{\mathsf{data}})}$$

For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly $P(H_0|E_{\mathsf{data}}) = P(H_0) = 0$.

5.2 General Idea

- ▶ Principle: Update the a-priori probability $P(H_0)$ of some event H_0 (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta} = b$ or $B: \hat{\beta} \in [b-\delta/2, b+\delta/2]$ with some small δ
- **Example:** H_0 : "tomorrow is nice weather"
 - $ightharpoonup P(H_0)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ B: tomorrow's weather forecast $B \in will$ be nice, not nice}
 - $ightharpoonup P(H_0|B)$: a-posteriori probability after hearing the forecast
- ▶ Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P(B|H_0)$ that can be expressed in terms of p. Want $P(H_0|B)$
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous β , discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β (continuous H_0) and continuous observation $\hat{\beta}$ (e.g., regression models)

5.3 Bayesian Inference for Discrete Quantities and Observations

The classical textbook case are binary variables (values "true", "false", each set has one element; generalisations easy):

$$H_0: \beta = \mathsf{true}, \quad \bar{H}_0: \beta = \mathsf{false}, \quad B: \hat{\beta} = \mathsf{true}; \quad \bar{B}: \hat{\beta} = \mathsf{false}$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

Example: Covid-19 tests

- \blacktriangleright H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H}_0)=97\,\%$, $P(B|\bar{H}_0)=3\,\%$
 - Incidence $P(H_0) = 5\%$

Bayes: pos. rate: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%,$ H_0 after pos. test: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5\%$

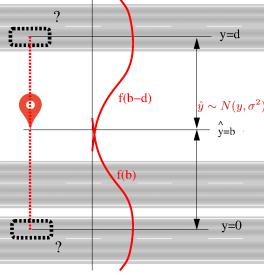
 H_0 after neg. test: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0) / P(\bar{B}) = 0.27\%$

5.4 Bayesian Inference for Discrete Quantities and Continuous Observations

- \triangleright Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_i) = p_i, \quad \sum_i p_i = 1$
- \triangleright Continuous measurement $\hat{\beta}$ with a given distribution of density $q(\hat{\beta} \mid \beta = \beta_i) = f(\hat{\beta} - \beta_i)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{i_0}$ with $\beta_{i_0} \in \{\beta_i\}$ and the observation B: $\hat{\beta} \in [b - \delta/2, b + \delta/2]$ with arbitraruly small δ :
- ▶ Bayes: $P(H_0) = p_{i_0}$, $P(B|H_0) = \delta f(b \beta_{i_0})$, and $P(B) = \delta \sum_{i} p_{i} f(b - \beta_{i})$

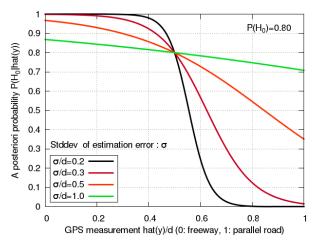
$$\Rightarrow P(H_0|\hat{\beta} = b) = \frac{P(H_0)P(B|H_0)}{P(B)} = \frac{p_{j_0}f(b - \beta_{j_0})}{\sum_{j} p_{j}f(b - \beta_{j})}$$

Example: Map matching



$$p(H_0) = \frac{\text{density freeway}}{\text{density freeway} + \text{density road}} = 0.8 \qquad P(H_0|\hat{y} = b) = \frac{0.8f(b)}{0.8f(b) + 0.2f(b-d)}$$

Map matching II



True vehicle position:

$$y = \left\{ \begin{array}{ll} 0 & \text{freeway} \\ d & \text{parallel road} \end{array} \right.$$

Lateral GPS measurement:

$$\hat{y} \sim \left\{ egin{array}{ll} N(0,\sigma^2) & {
m freeway} \\ N(d,\sigma^2) & {
m road} \end{array}
ight.$$

Measured:

$$\hat{y}=30\,\mathrm{m},~\sigma=10\,\mathrm{m},$$
 at a distance $d=50\,\mathrm{m}$

Read from graphics:

$$\frac{\sigma}{d} = 0.2, \quad \frac{\hat{y}}{d} = 0.6$$

$$\Rightarrow P(H_0|\hat{y}) = 0.23$$

 \Rightarrow you are on the parallel road with a probability of 77 %

5.5 Bayesian Inference for Continuous Quantities and Measurements

- ▶ The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 meeds to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0
- ▶ Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{\mathsf{data}}$):

$$\begin{array}{cccc} P(H_0|E_{\mathsf{data}}) & = & \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \\ & \stackrel{P(H_0) \to \int_{\beta \in H_0} h(\beta) \ \mathrm{d}(\beta)}{=} & \frac{\int_{\beta \in H_0} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta}{\int_{\beta \in I\!\!R} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta} \\ & \stackrel{\mathsf{def power function } \pi}{=} & \frac{\int_{\beta \in H_0} \pi(\beta)h(\beta) \ \mathrm{d}\beta}{\int_{\beta \in I\!\!R} \pi(\beta)h(\beta) \ \mathrm{d}\beta} \end{array}$$

Inference for a given measurement

Probability for H_0 based on a given realisation (measurement)

$$\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$$
 with arbitrarily small δ :

- ightharpoonup eta has the a-priori distribution density h(eta)
- The estimation error $\hat{\beta} \beta$ is independent from β (as in the OLS estimator under Gauß-Markow conditions), so $\hat{\beta}$ has the conditional density $g(b|\beta) = f(b-\beta)$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

$$\stackrel{P(H_0) \to \int h(\beta) \ d(\beta)}{=} \frac{\int_{\beta \in H_0} \delta \ g(b|\beta)h(\beta) \ d\beta}{\int_{\beta \in \mathbb{R}} \delta \ g(b|\beta)h(\beta) \ d\beta}$$

$$\Rightarrow P(H_0|B) = \frac{\int_{\beta \in H_0} f(b-\beta)h(\beta) d\beta}{\int_{\beta \in \mathbb{R}} f(b-\beta)h(\beta) d\beta}$$

Notice that the denominator is just the convolution [f*g] at $\hat{\beta}=b$

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (expectation=0 is no restriction)
- ▶ Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$
- Null hypothesis H_0 : $\beta \leq \beta_0$ $\Rightarrow f(b-\beta) = \phi\left(\frac{b-\beta}{\sigma_b}\right), \quad h(\beta) = \phi\left(\frac{\beta}{\sigma_\beta}\right), \quad \int_{H_0} \mathrm{d}\beta = \int_{-\infty}^{\beta_0} \mathrm{d}\beta$
- **D** Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b\frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_{\beta}\sigma_b}{\sqrt{\sigma_{\beta}^2 + \sigma_b^2}}$$

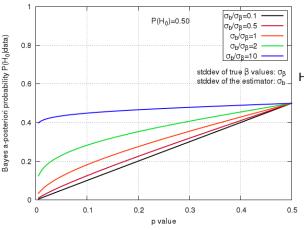
- When expressing the observation in terms of the p value, $b=\beta_0+\sigma_b\Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0=\sigma_\beta\Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0
- ▶ If $\sigma_b^2 \ll \sigma_\beta^2$ and H_0 is an interval, we have $P(H_0|\hat{\beta}) \to p$ \Rightarrow "ressurrection" of the p-value!

Questions

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \to p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \to P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

! Limiting case $\sigma_{\beta} \ll \sigma_{b}$: $\mu \to 0$, $\sigma \to \sigma_{\beta}$, $P(H_{0}|\hat{\beta}) = \Phi(\beta/\sigma_{\beta}) = P(H_{0})$

Bayesian inference for a Gaussian prior distribution 1: $P(H_0) = 0.5$



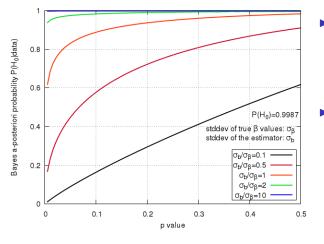
Example: Bike modal split β

- Past investigation: $\beta = (20 \pm 3) \%$
- New investigation: $\hat{\beta} = (26 \pm 3) \%$

Has biking increased?

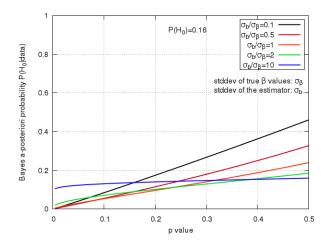
- Bayesian: $\sigma_{\beta} = \sigma_b = 3 \,\%, \\ p = 0.0227, \, P(H_0) = 0.5 \\ \text{read from graphics:} \\ P(H_0|\hat{\beta}) = 8 \,\% \Rightarrow \text{no!} \\ \text{(a difference test would} \\ \text{give the same)}$

Bayesian inference for a Gaussian prior distribution 2: $P(H_0) = 0.9987$



- $\begin{array}{l} \sigma_b \gg \sigma_\beta \\ \Rightarrow P(H_0|\hat{\beta}) \approx P(H_0) \\ \Rightarrow \text{ fuzzy a-posteri data} \\ \text{essentially give no} \\ \text{information} \Rightarrow \text{a-priori} \\ \text{probability nearly} \\ \text{unchanged.} \end{array}$

Bayesian inference for a Gaussian prior distribution 3: $P(H_0) = 0.16$



Again, new data with $\sigma_b \ll \sigma_\beta$ gives much a-posteriori information (at least if p is significantly different from $P(H_0)$),

new data with $\sigma_b \gg \sigma_\beta$ are tantamount to essentially no new information.

5.6 Conclusion

- ightharpoonup For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics ightharpoonup probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 The measurement is completely michading, even for bimodal continuous.
 - The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$