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Solution to Problem 8.1: Elasti
ities

(a) Exogenous variables: approa
h times Tni and 
osts Cni. Both are 
hara
teristi
a sin
e

they are attributes of the alternatives (airports), not the de
ision makers. The spe
i�-


ation in the utilities is generi
. This is appropriate for the problem at hand for both

times and 
osts sin
e the times relate to the approa
h by whatever mode, so there is no

reason to assume di�erent time sensitivities. For 
osts, a generi
 modelling is reasonable,

anyway.

(b) � β1: Global preferen
e BER vs. DRS. The marginally positive value β̂1 = 0.195
(although probably not signi�
ant for a sample of this size) means that, given the

same airfares and approa
h times, BER is marginally preferred by 0.195 utility units

(UU).

� β2: Global preferen
e FRA vs. DRS in UU. The higher preferen
e is plausible sin
e

FRA, but not DRS, is a hub. So, the observed preferen
e probably arises from the

opportunity to use 
onne
ting �ights in FRA, whi
h is not modelled expli
itely.

� β3: Time sensitivity whi
h, as expe
ted, is negative.

� β4: sensitivity to 
osts; negative, as expe
ted.

Why are, 
ompared to inner-
ity modal-split analyses, the absolute values of β̂3 and

β̂4 smaller by one order of magnitude? The reason is the higher standard deviation of

the random utility. Spe
i�
ally, the time equivalent of one UU is 1/|β̂3| = 77Minuten
while it is of the order of 5minutes for inner-
ity trips. Sin
e one UU denotes (up to a

fa
tor π/
√
6) the standard deviation of the random utility (see below), this means the

random utility is greater by about a fa
tor of 10. This is to be expe
ted: Obviously, for a

multi-hour journey, there are more a
umulated un
ertainties than for an inner-
ity trip.

(
) � AC Berlin-Dresden in minutes: −β1/β3 = 15.0

� AC Berlin-Dresden in Euro: −β1/β4 = 7.98

� AC Frankfurt-Dresden in minutes: −β2/β3 = 44.7

� AC Frankfurt-Dresden in Euro: −β2/β4 = 23.80

� VoT in Euro/h: 60β3/β4 = 32Euro/h

� Utility unit (UU) in minutes: 1NE = 1/β3 = 77Min

� Random utility standard deviation in minutes: σǫ = −π/
√
6 1/β3 = 99Min.

The VoT of 32Euro/h appears 
omparatively elevated. However, one needs to bear in

mind that the airfare in
ludes the round trip while the approa
h time is for the single
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trip. Hen
e, for the 
omplete journey, we have twi
e the approa
h time redu
ing the

a
tual VoT to 16e/h.

(d) Deterministi
 utilities:

V61 = −6.19, V62 = −7.47, V63 = −8.31.

Denominator:

3
∑

i=1

eV6i = 0.00287.

Choi
e probabilities:

Dresden: P61 = 71.6%, Berlin: P62 = 19.8%, Frankfurt: P63 = 8.6%.

Observed per
entaged frequen
ies:

Dresden: h61 = 37/53 = 69.8%, Berlin: h62 = 12/53 = 22.6% Frankfurt: h63 = 4/53 = 7.5%.

(e) Mi
ros
opi
 proper pri
e elasti
ities:

ǫ
(mi
,C)

nii =
Cni

Pni

∂Pni

∂Cni
= β4Cni (1− Pni) .

For group 6:

ǫ
(mi
,C)

611
= β4C61 (1− P61) = −1.4,

ǫ
(mi
,C)

622
= β4C62 (1− P62) = −4.9,

ǫ
(mi
,C)

633
= β4C63 (1− P63) = −6.7

Similarly, the mi
ros
opi
 proper approa
h-time elasti
ities:

ǫ
(mi
,T)

611
= β3T61 (1− P61) = −0.37,

ǫ
(mi
,T)

622
= β3T62 (1− P62) = −1.3,

ǫ
(mi
,T)

633
= β3T63 (1− P63) = −1.4

(f) The mi
ros
opi
 
ross elasti
ities ǫnij denotes the in
rease of the booking at airport i in

per
ent if airport j 6= i raises its airfares by 1%: ǫnij = −β̂4KnjPnj . For person group

n = 6, we obtain, if FRA (j = 3) 
hanges its fares:

ǫ
(mi
,C)

613
= ǫ

(mi
,C)

623
= −β4C63P63 = 0.63

The 
ross elasti
ity is positive: If FRA in
reases its fares, the demand in
reases in BER

and DRS by 0.63%. This is due to the IIA property: The relative preferen
e of DRS over

BER does not 
hange if a third airport (FRA) 
hanges its 
onditions. In order that the
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ratio of the bookings at DRS and BER remains 
onstant, both need to obtain a share

from the former FRA 
ustomers whi
h is proportional to the 
ustomers these airports

already have.

Sum 
ondition expli
it for the MNL:

∑

i

Pniǫni3 = −β4Pn1Cn3Pn3)− β4Pn2Cn3Pn3) + β4Pn3Cn3(1− Pn3)

= β4Cn3Pn3(−Pn1 − Pn2 + 1− Pn3)

= 0 [da

∑

i

Pni = 1℄.

Sum 
ondition generally from the de�nition of the elasti
ities (e.g., pri
e easti
ities):

∑

i

Pniǫni3 =
∑

i

Pni
Cn3

Pni

∂Pni

∂Cn3
= Cn3

d

dCn3

(

∑

i

Pni

)

= 0

sin
e the sum of the 
hoi
e probabilities =1 (be
ause the 
hoi
e set must be 
omplete).

Intuitively, the sum relation re�e
ts a zero-sum game. Be
ause of the 
ompleteness of the

alternative set, what is added to one alternative must be taken from another one.

(g) General expression for the ma
ros
opi
 pri
e proper elasti
ity:

ǫ
(ma
,C)

ii =
Ci

Ni

∂Ni

∂Ci
. (1)

� Ni =
∑N

n=1
Pni: Estimated total demand for �ights at airport i if there are N

potential 
ustomers.

� Ci =
∑

nCni sum of the airfares at airport i

and, after inserting the 
hoi
e probabilities,

ǫ
(ma
,C)

ii =
Ci

Ni

∑

n

∂Pni

∂Ci
(2)

Case 1: all pri
es are 
hanged by a �xed absolute amount

The, we have dCi = N dCni , hen
e

∂Pni

∂Ci
=

∂Pni

∂Cni
=

Pni

Cni
ǫnii

and �nally

ǫ
(ma
,abs,C)

ii =
Ci

Ni

∑

n

Pni

Cni
ǫnii (3)
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Case 2: All pri
es are 
hanged by a �xed relative amount

Then, we have for ea
h 
ustomer dCni/Cni = dCi/Ci, hen
e

∂Pni

∂Ci
=

Cni

Ci

∂Pni

∂Cni
=

Pni

Ci
ǫnii

and �nally

ǫ
(ma
,rel,C)

ii =
1

Ni

∑

n

Pniǫnii (4)

This 
an be written as a weighted mean of the mi
ro elasti
ities:

ǫ
(ma
,rel,C)

ii =
∑

n

wniǫnii, wni =
Pni

Ni
=

Pni
∑

j Pnj
. (5)

This means, the weight is given by the expe
ted share that 
ustomer group n 
ontributes

to the total ti
ket demand Ni at this airport.

Noti
e that the ma
ro elasti
ities are the quantities that are relevant for the airport

managers while the mi
ro elasti
ities 
an be dire
tly 
al
ulated by the disrete-
hoi
e

model.

Interpretation of the numeri
al values given for the ma
ro-elasti
ities:

If either one of the three airports DRS, BER, and FRA in
reased its fares by 1%, the


onsequen
es would be

� 2.6% loss in DRS,

� 1.4% loss in BER,

� and 1.3% loss in FRA.

Noti
e that, if the ma
ros
opi
 pri
e elasti
ity is greater than (less negative than) −1,
the airport managers will obtain a greater 
ash in�ow when in
reasing the airfares.

1

(h) Assuming the same 
hoi
e probabilities in DRS and BER,

P1

P2

= eV1−V2 = 1 ⇒ V1 = V2,

we 
an formulate a 
onditions for this equality in terms of times and 
osts at DRS:

ln

(

P1

P2

)

= V1 − V2 = −β1 + β3(T1 − T2) + β4(C1 − C2)

Solving for the approa
h time T1 to DRS, we obtain

T1(C1) =
ln
(

P1
P2

)

+ β1 + β3T2 − β4(C1 − C2)

β3
1

Probably, higher earnings are also possible at a slightly more negative elasti
ity be
ause of the redu
ed variable

(per-
ustomer) 
osts.
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Parti
ularly, at the same 
osts, we obtain for the approa
h times to DRS and BER the

relation

T1 = T2 +
β1
β3

= T2 − 15Min.

This di�eren
e is exa
tly the global malus of DRS with respe
t to BER, 
f. Part (
). The

slope of the 
urve represents the inverse of the impli
it VoT,−β4/β3 = −1.88Minuten/Euro.

Spe
i�
ally, if T2 = 120Min and C2 = 200Euro, the indi�eren
e line for P1 = P2 is given

by

T1(C1) =
β1
β3

+ 120Min − β4
β1

(C1 − 200Euro).
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Further results from the parameter estimation
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Solution to Problem 8.2: Maximum-Likelihood-Method: the Basi
s

(a) Binomial distribution

(i) By de�nition, the binomial distribution B(N, θ) gives the number of �trues� in N
independent binary true/false de
isions (�Bernoulli experiment�) provided that, for

ea
h experiment, the probability for �true�is 
onstant= θ. In our 
ase, the out
ome

�true� is just �alternative 1�.

(ii) Finding the maximum of the se
ond (y = 2) and sixth (y = 6) data line of the table

gives θ̂ = 0.2 and 0.6, respe
tively.

2

(iii) Likelihood:

L(θ|y) =
(

10
y

)

θy(1− θ)10−y

Log-Likelihood:

L̃(θ|y) = ln

[(

10
y

)]

+ y ln θ + (10 − y) ln(1− θ)

Maximizing the not-logarithmized likelihood L(θ):

dL

dθ
=

(

10
y

)

[

yθy−1(1− θ)10−y + θy(10− y)(1− θ)10−y−1(−1)
]

=

(

10
y

)

θy−1(1− θ)10−y−1 [y(1− θ)− θ(10− y)]

!
= 0.

Sin
e the prefa
tor before the bra
kets [...] is always > 0, the fa
tor inside the bra
kets
must be equal to zero:

[y(1− θ)− θ(10− y)] = 0 ⇒ θ =
y

10
.

Maximizing the log-likelihood L̃(θ):

dL̃(θ)

dθ
=

y

θ
+

10− y

1− θ
(−1)

!
= 0,

i.e.,

y(1− θ) = θ(10− y) ⇒ θ =
y

10
.

As expe
ted, we otain the same result (and the veri�
ation that the maximum from

the table lines are, in fa
t, exa
t).

2

Of 
ourse, the true argument of the maximummay lay somewhere in between, parti
ularly sin
e the likelihood

as a fun
tion of θ is non-symmetri
. Interestingly, see part (iii), these values are exa
t.
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(b) Poisson distribution

The Poisson distribution is valid if the probability of re
eiviung a 
all does not depend on

history (�memory-less�), parti
ularly not on the time di�eren
e to the last 
all. Thus, one

needs several phones and the possibility to �hold the line� sin
e, otherwise, 
alls are blo
ked

during a 
onsveration violating the requirement of no memory.

Furthermore, the two employees must re
eive di�erent kinds of 
alls with di�erent frequen-


ies sin
e, otherwise, the expe
tation value µ of the number of 
alls in a 
ertain time is

the same for both lines and one 
ould average them to estimate µ instead of a separate

esimation.

(i) Read o� the table: y = 2 
alls → 2nd data line of the table, µ̂ = 2; y = 4 
alls → 4nd

data line, µ̂ = 4;

(ii) Likelihood fun
tion:

L(µ) =
µye−µ

y!

Maximization:

dL

dµ
=

d

dµ

(

ey lnµe−µ

y!

)

=
d

dµ

(

ey lnµ−µ

y!

)

=
1

y!
ey lnµ−µ

(

y

µ
− 1

)

Sin
e the prefa
tor of the bra
kets is always > 0, the fa
tor in the bra
kets must

vanish ⇒ µ = y.

Alternatively by using the produ
t rule of di�erentiation:

dL

dµ
=

1

y!

[

yµy−1e−µ + µy(−1)e−µ
]

=
µy−1e−µ

y!
[y − µ]

(iii) Log-Likelihood:

L̃(µ) = − ln(y!) + y lnµ− µ,

dL̃(µ)

dµ
=

y

µ
− 1 ⇒ µ = y.

(
) Normal distribution:

� Given: data of sales yi in week i,

� Model: Gaussian distribution of the sales (
entral-limit theorem): Yi ∼ N(µ, σ2).
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� Likelihood-Funktion:

L(µ, σ2) =
n
∏

i=1

1√
2πσ2

e−
(yi−µ)2

2σ2 .

� Log-Likelihood-Funktion:

L̃(µ, σ2) = ln
(

L(µ, σ2)
)

=
n
∑

i=1

(− ln 2π − lnσ2

2
− (yi − µ)2

2σ2

)

= 
onst.− n

2
lnσ2 − 1

2σ2

n
∑

i=1

(yi − µ)2

� Setting zero the partial derivatives

∂L̃
∂µ

and

∂L̃
∂σ2 (wat
h out, we derive with respe
t to

σ2
, not σ!):

∂l

∂µ
= −1

2

n
∑

i=1

(

−2
yi − µ

σ2

)

!
= 0,

∂l

∂σ2
= − n

2σ2
+

1

2

n
∑

i=1

(

(yi − µ)2

σ4

)

!
= 0.

From

∂L̃
∂µ
, we obtain

n
∑

i=1

yi = nµ ⇒ µ̂ =
1

n

n
∑

i=1

yi = ȳ

and from

∂L̃
∂σ2 :

n =

n
∑

i=1

(yi − µ)2

σ2
⇒ σ̂2 =

1

n

n
∑

i=1

(yi − µ)2).

� 
ompare the result with the least-squared errors estimate for the trivial regression

model:

y = µ+ ǫ, ǫ ∼ N(0, σ2)

The OLS estimate for µ gives

µ̂ = ȳ ⇒ the same result!

The OLS estimator for the varian
e is equal to the varian
e of the random term

sin
e no exogenous variables are in
luded, thus all of the varian
e is the unexplained

varian
e. We obtain

σ̂2 =
1

n− 1

n
∑

i=1

(yi − ȳ)2.

Here, the ML estimator and the unbiaed OLS estimator are not identi
al unless the

expe
tation µ is known a-priori (in this unrealisti
 
ase, ȳ is repla
ed by the true µ
and n− 1 by n for an unbiased estimate).
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