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Introduction: Vectors, Matrices, and Basic Operations on them
(1) Vectors and Matrices

“Normal” vector = column vector @ with n components:

ai

=T
I

“n x l-matrix”
Qn

row vector = transposed column vector:

- .
a=(ay, - ,an) “1 X n-matrix”

n X m-matrix, i.e., a matrix with n rows und m columns.

aip o Gim
A= “n X m-matrix”

Gn1 Gnm,

Transposed matrix: the rows and columns are swapped (the transposed vector above is a special
case of that).

ailr o Gpl
A =

(él)z‘j = Qji-

A1m Gnpm

Unit matrix E (neutral element with respect to matrix multiplication)

0

i

1 0
=10 0 where A-E=FLE-
0 1

|5S
[BS

0

Inverse A~' of a regular (necessarily square) matrix A:

A A=A AT =F

(The only special case where a matrix product is commutative)
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(2) Additions and multiplications (the dots for the scalar and matrix products
will be left out later on)

Operation

Definition

Condition

Result

vector addition

matrix addition

multiplication
by a number

scalar produkt

dyadic
(tensor)
product

matrix
times vector

matrix-
multiplikation

(6+5)_ =a; + b
(A+B),; = aij + by
(cd); = caj, (cé)ij = ca;j
6’-525,-52 Zazbl

i=1

al bl al bnb

2y
SJ1
I

An, bl An, bnb

(@)~ £ o

(A- é)ij = > aikby;
k=1

nA=mnp, mAg =mp
none

Ng = Ny

none

A = n X m-matrix,
B =m x k - matrix

vector mit
ng components

na X ma-matrix

vector or
matrix

number (“scalar”)

Ng X Ny - matrix

n- vector

n X k-matrix

Notice that, formally, an n- vector is nothing else as a n x 1-matrix, and a corresponding row

vector a 1 x n-matrix. Furthermore, a number is a 1 x 1-matrix. Consequently, the rules for
scalar and dyadic products, the multiplication rule for “matrix times vector”, and the addition
and multiplication of normal numbers are just special cases of matrix multiplikation!

www.mtreiber.de/Vkoek Ma

Methods Econometrics 2023 /24

Tutorial 2, page 2




“Friedrich List” Faculty of Transport and Traffic SciencesChair of Econometrics and Statistics, esp. in the Transport Sector

Problem 2.1: Matrix Rules

Prove by explicitely calculating the right-hand and left-hand sides of the following that the
following statements and rules are valid:

(a) commutativity is valid for scalar products with simultaneous transposition, @b = b'@, but
not for general (non-degenerated) matrix products: AB # BA

(b) Associativity for matrix products and matrix-vector products: (AB)C = A(BC),
(@B)C = d(BC), (AB)¢ = A(B¢), and the like.

oL

(c) Distributivity for general matrix products such as é(g +0) = ég +A
and  A(B+C) = AB + AC

(d) “Binary switching property” of the transposition operation: (é’)/ =A

Ny

(e) Rules for the transpose of vectors and matrices: (éb) = l_)"é' and (A:B)/ =B'A

(f) For arbitrary n x m matrices X, the product X' ! X is a symmetric m x m matrix:

(X'X),; = (XX)

(g) For arbitrary regular (invertible) matrices, the operations of transposition and inversion
are commutative, i.e., (é/)_l = (éfl)/.

Problem 2.2: Matrix Inversion

(a) Given is a general 2 x 2 Matrix

a= (7 4)

Prove by means of matrix multiplication that the inverse of this matrix is given by

-1
<C d) N @ <—c a > 9 deté = ad — bc (1)

provided A is regular, i.e., the determinant ad — bc # 0.

(b) (Exercise at home): Show by evaluating the matrix product A - é_l that the inverse of
regular 3 x 3 matrices is given by

Wb e\ ! ei—fh ch—bi bf—ce
i e f| —— : fg—di ai—cg cd—af
o b i aci+bfgtcdh —afh=bdi—ceg \ g _ oo by _ah ae —bd
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Problem 2.3: Vector and Matrix Derivatives

A vector derivative of a scalar function depending on a vector E of variables is defined to be
the column vector

of
0By

Apply this definition to the scalar functions fi(3) = §'@ and fo(f) = ﬁ’ég (@ and A do not

-,

depend on () and show that following derivation rules are valid:

2 (39)= & () -

55 (749)

and

(A+4)5.
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