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When modeling the acceleration and deceleration of drivers, there are three

characteristic time constants that influence the dynamics and stability of traf-

fic flow: The reaction time of the drivers, the velocity adaptation time needed

to accelerate to a new desired velocity, and the numerical update time. By

means of numerical simulations with a time-continuous car-following model,

we investigate how these times interplay with each other and effectively in-

fluence the longitudinal instability mechanisms for a platoon of vehicles. The

long-wavelength string instability is mainly driven by the velocity adaptation

time while short-wavelength local instabilities arise for sufficiently high reac-

tion and update times. Furthermore, we investigate the relation between large

update time steps and finite reaction times as they both introduce delays in

the reaction to the traffic situation. Remarkably, the numerical update time

is dynamically equivalent to about half the reaction time which clarifies the

meaning of the time step in models formulated as iterated maps such as the

Newell and the Gipps model. Furthermore, with respect to stability, there is

an optimal adaptation time as a function of the reaction time.

1 INTRODUCTION

Traffic dynamics, including the nature of human driving behavior and their representa-
tions in terms of mathematical models, attracts extensive interest across various scientific
disciplines such as traffic engineering, physics, mathematics, and psychology (Helbing,
2001; Chowdhury et al., 2000; Brackstone and McDonald, 1999; Kerner, 2004; Green,
2000). An essential feature of human driving is a considerable reaction time, which is a
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consequence of the physiological aspects of sensing, perceiving, deciding, and performing
an action (Shiffrin and Schneider, 1977). This complex reaction time is of the order of 1 s
and varies strongly between different drivers (age, gender), different stimuli, and different
studies (Green, 2000). Remarkably, adaptive cruise control (ACC) systems, which con-
trol the acceleration (and deceleration) of a vehicle, typically display time delays on the
control path that cannot be neglected either (Kranke et al., 2006; Marsden et al., 2001).
Since ACC systems are the first driver assistance systems with the potential to influence
traffic flow characteristics (Kesting et al., 2007a,b; VanderWerf et al., 2002; Marsden
et al., 2001), a profound understanding of the dynamics and the instability mechanisms
caused by time delay is relevant from the point of view of automated driving as well.

Clearly, reaction times are an essential factor contributing to traffic instabilities and,
consequently, are an essential element in many traffic models (May, 1990). In the
most straightforward case, they are introduced as time delays into time-continuous car-
following models which results in a coupled set of delay-differential equations. This
approach has been pursued, e.g., for the Optimal Velocity Model (Bando et al., 1995,
1998), and for the Intelligent Driver Model (Treiber et al., 2000, 2006a). More com-
monly, however, microscopic traffic models have been formulated in terms of an iterated

coupled map such as the model of Gipps (1981), or the model of Newell (1961), or as a
cellular automaton such as the model of Nagel and Schreckenberg (1992). In this class
of models, the update time is considered as an explicit model parameter rather than an
auxiliary parameter needed for numerical integration. Moreover, it is often interpreted
as “reaction time” as well.

Even for zero reaction time and negligible update time, it is well known in the traffic
theory for car-following models (Helbing, 2001), and also for macroscopic models (Treiber
et al., 1999), that collective instabilities of the traffic flow can occur. This is true
although a pair of vehicles is always locally stable in this case, cf. Eqs. (6) – (7) below.
The reason is that, in an extended multi-particle system with many degrees of freedom,
two concepts of linear stability have to be considered: Local stability is related to the
response of a vehicle following the motion of the vehicle directly in front, i.e., to the
dynamics of a pair of vehicles. Asymptotic, string or collective stability refers to the
damping of a perturbation initially introduced by the leading vehicle that propagates
upstream relative to the vehicle motion in a platoon of several vehicles following each
other (May, 1990) which is, in general, a more restrictive criterion than local stability.
In traffic flow, the source of the string instabilities is the finite velocity adaptation time
resulting from limited acceleration capabilities. As a consequence, perturbations amplify
while propagating upstream in the platoon of vehicles and eventually lead to oscillating
congested traffic (stop-and-go traffic), which is a commonly observed type of traffic
congestion (Schönhof and Helbing, 2007).

In this paper, we carefully distinguish between reaction time, update time, and adap-
tation time and investigate the role of each of these times with respect to instabilities of
traffic flow. We identify the local and collective mechanisms for instability and show that
reaction time and update time are mainly responsible for the first and the adaptation
time for the latter.

The paper is structured as follows: In the following section, the update time (in 2.1),
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the reaction time (2.2), and the velocity adaptation time (2.3) will be introduced in a
general form applicable to the class of time-continuous car-following models. For matters
of illustration, we will apply these concepts to the Intelligent Driver Model (Treiber
et al., 2000) and the dynamic effects resulting from the three different times will be
discussed (2.4). In Sec. 3, the stability of a platoon of vehicles will be investigated by
numerical simulations. First, we will study how the stability is influenced by the reaction
time and a finite acceleration capability (3.2). Secondly, we will investigate the interplay
between reaction time and numerical update time (3.3). Finally, our results will be
discussed in Sec. 4.

2 IMPLEMENTATION AND MODELING REACTION TIME,

UPDATE TIME AND ADAPTATION TIME IN

CAR-FOLLOWING MODELS

Microscopic traffic flow models describe the motion of individual driver-vehicle units α.
In this work, we will focus on the subclass of (single-lane) time-continuous microscopic
models, i.e., car-following models, where the acceleration dvα/dt of vehicle α is of the
general form

dvα

dt
= f (sα, vα, ∆vα) . (1)

The acceleration therefore depends on the own velocity vα, the gap sα, and the velocity
difference (approaching rate) ∆vα := vα − vα−1 to the leading vehicle α − 1. Here
and in the following, we assume that the vehicle indices α are ordered such that α − 1
denotes the preceding vehicle. The gap s is defined by the vehicle positions x and
vehicle lengths l by sα(t) := xα−1(t) − xα(t) − lα−1. Notice that in the model class
defined by Eq. (1), the acceleration only depends on the immediate predecessor and
it is instantaneous in time. The specific model is uniquely defined by the acceleration
function f(·). It is straightforward to generalize the model to include a look-ahead
to several vehicles (Treiber et al., 2006a), include the vehicle immediately behind the
drivers, or include reactions to decelerations of the front vehicle (braking lights). All
this leads to greater stability but does not change the main results. So, for the purpose
of clarity, we only consider models of the type (1). In the following subsections, we will
describe how the update time, the reaction time and the velocity adaptation time are
related to models of type (1).

2.1 Update time

Together with the general equation of motion, dxα/dt = vα, Eq. (1) represents a locally
coupled system of ordinary differential equations (ODEs) for the positions xα and veloc-
ities vα of all vehicles α. As the considered acceleration functions f(·) are non-linear, we
have to solve the set of ODEs by means of numerical integration. In the context of car-
following models, it is natural to use an explicit scheme assuming constant accelerations
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within each update time interval ∆t. This leads to the update rules

vα(t + ∆t) = vα(t) + v̇α(t)∆t,

xα(t + ∆t) = xα(t) + vα(t)∆t +
1

2
v̇α(t)(∆t)2,

(2)

where v̇α(t) is an abbreviation for the acceleration function f (sα(t), vα(t), ∆vα(t)). For
∆t → 0, this scheme locally converges to the exact solution of (1) with consistency
orders 1 and 2 for the velocities (Euler update), and positions (modified Euler update),
respectively.

Besides the numerical necessity for a finite time discretization, the update time ∆t
can be interpreted as representing finite attention to the traffic: Only at times that
are a multiple of ∆t, drivers look at the traffic situation and instantaneously adapt
their acceleration to the new situation. Because of the intuitive meaning of this update
procedure in the context of traffic, the update rules (2), or similar rules, are sometimes
considered as part of the model itself rather than as a numerical approximation. Popular
examples of such coupled map models include the model of Newell (1961), and the model
of Gipps (1981).

Finally, it is instructive to eliminate v̇α from the positional update of (2) by using the
velocity update rule. The resulting positional update xα(t+∆t) = xα(t)+(vα(t)+vα(t+
∆t))∆t/2, referred to as “trapezoidal rule”, is commonly applied to close the velocity
equation of the Gipps model (Wilson, 2001).

2.2 Reaction time

A reaction time T ′ is incorporated in a time-continuous model of the type given by Eq. (1)
by evaluating the input on the right-hand side at a previous time t−T ′. In this way, one
obtains a coupled set of delay-differential equations (DDEs). Although both the delay
T ′ of time-continuous models, and the update time ∆t of iterated maps (or numerical
integration schemes) have been interpreted as a reaction time, it is essential to distinguish
between the two concepts. From a mathematical perspective, the analysis of DDEs is
technically more demanding than that of iterated maps (Orosz et al., 2004). Moreover,
the iterated map is computationally more efficient which was the original motivation to
formulate the Gipps model in this way. However, “it is not at all clear how the dynamics
of the discretization are affected by the integration rule used” (Wilson, 2001) and, in
particular, how it is related to the dynamics of the DDE. From a behavioral perspective,
the two model classes represent different aspects of the human reaction. While the
numerical integration scheme (2) (and most iterated-map traffic models) corresponds
to an instantaneous adaptation of the acceleration (or deceleration) v̇α at discrete time
instances n∆t, the DDE corresponds to a delayed adaptation of the acceleration which,
however, takes place continuously in time. Consequently, ∆t models the typical length
of time periods where drivers are not fully concentrated on the driving task, while T ′

represents the actual reaction time of an ideally attentive driver.
Since the conceptual distinction between these two delay mechanisms is a main point of

this contribution, we visualize the corresponding effective delay time τeff(t) as a function
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T’
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Delay−differential equation

Simulation time t

Figure 1: Effective delay time as a function of the continuous simulation time for T ′ = T0 and

∆t = 0 (delay-differential equation, dashed), and for T ′ = 0 and ∆t = T0 (iterated map, solid).

of continuous time t (Fig. 1). To compare the relative effects, both time constants have
been set equal, T ′ = ∆t = T0.

In case of the reaction time (or DDE), the acceleration at any time t is calculated using
the information available at t − T ′, i.e., the delay is always given by τeff(t) = T ′ = T0.
For the complementary case of a numerical update rule (2) (or iterated map) with
non-negligible update time ∆t = T0, the effective delay time depends on time t. At
times t = n∆t with integer n, the acceleration is instantaneously updated according
to the actual positions and velocities. For all other time instants, the positional and
velocity update rules (2) corresponds to constant accelerations for all vehicles, i.e., to no

reactions of the drivers. Consequently, any changes of the system at time t = n∆t − t′,
0 ≤ t′ < ∆t, will be considered by the drivers at time t = n∆t corresponding to a reaction
time τeff(t′) = t′, eventually leading to the saw-tooth function of Fig. 1. Consequently,
a reaction time T ′ = T0 should have a stronger destabilizing effect than an update time

interval of the same numerical value. This is consistent with the results presented in
Fig. 8 of Sec. 3.3 below.

By introducing the delay T ′ into the numerical integration according to (2), the re-
action time can be varied independently from the update interval, and the combined
effects of distractions and finite reaction times can be investigated simultaneously. If the
reaction time is considered as a multiple of the update time interval, i.e., T ′ = n∆t, it is
straightforward to generalize the equations (2) by calculating all terms on the right-hand
sides with the velocities and positions n time steps in the past. However, since the reac-
tion time T ′ is a physiological parameter that is independent from the update time ∆t
(regardless of whether the latter is interpreted physiologically or from the perspective of
the numerical integration), T ′ is generally not a multiple of ∆t. To allow for independent
values of T ′ and ∆t, we propose a linear interpolation according to

x(t − T ′) = βxt−n−1 + (1 − β)xt−n, (3)

where x denotes any quantity on the right-hand side of Eq. (1) such as sα, vα, or ∆vα,
and xt−n denotes this quantity taken n time steps before the actual step. Here, n is
the integer part of T ′/∆t, and the weight factor of the linear interpolation is given by
β = T ′/∆t − n. We emphasize that all input stimuli sα, vα, and ∆vα are evaluated at
the delayed time, cf. Fig. 3 below. As initial conditions, DDEs require values for the
dependent variables for a whole time interval T ′. In the simulations, we have assumed
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constant initial values.

2.3 Velocity adaptation time

In contrast to the reaction time and the update time, the velocity adaptation time is
already implicitly contained in the acceleration function of Eq. (1). Since, in general,
this time varies with the traffic situation, its definition is not unique. In this paper, we
define this time locally based on a vehicle following a leader that drives at a constant
velocity vlead. In a stationary situation, the velocity of the considered vehicle is given by
vα = vlead, and the distance to the leader by the equilibrium gap sα = se related to vlead,
which is calculated using the condition f(se, vlead, 0) = 0 for the acceleration function.
We define the velocity adaptation time based on small deviations from stationarity for
the system (1) (i.e., setting T ′ = ∆t = 0) so that a local linear analysis can be applied.
To perform the linearization, we split the velocity vα into the velocity of the leading
vehicle and the approaching rate uα = u, and the gap sα into the equilibrium gap se,
and a small deviation yα = y,

vα = vlead + u,

sα = se + y.
(4)

From the equation dxα

dt
= vα defining the velocities, and Eq. (1) we thus obtain

dy

dt
= −u,

du

dt
= f(se + y, ve + u, u) =

∂f

∂s

∣

∣

∣

∣

e

y +
∂f

∂v

∣

∣

∣

∣

e

u +
∂f

∂∆v

∣

∣

∣

∣

e

u + nonlinear terms.
(5)

The subscript e denotes that all quantities are taken at the values for the stationary
situation, i.e., v = vlead = ve, s = se, and ∆v = 0. The linear part can be written as a
single equation for the gap deviation,

d2y

dt2
+ 2η

dy

dt
+ ω2

0y = 0 (6)

where the coefficients are given by

η = −1

2

(

∂f

∂v
+

∂f

∂∆v

)
∣

∣

∣

∣

e

and ω2
0 =

(

∂f

∂s

)
∣

∣

∣

∣

e

. (7)

The second order ODE (6) is of the type for a damped linear oscillator. Using the
exponential function y(t) = expλt leads to the condition λ2 + 2ηλ + ω0 = 0. Therefore,
the velocity adaptation time can be defined by the decay time of the velocity-dominated
eigenmode corresponding to the real part of the root λ2 = −η −

√

η2 − ω2
0

according to

1

τ̃v
= Re(−λ2) = Re

(

η +
√

η2 − ω2
0

)

. (8)
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We remark that for all meaningful definitions of acceleration functions (1) we have ∂f
∂v

≤ 0

and ∂f
∂∆v

≤ 0 leading to a positive value for the relaxation time (8), i.e., the system is
locally linearly stable, and τv is well defined. By means of simulations in Sec. 3.2 below,
however, we will show that string instability can emerge as a result of the collective
properties of traffic flow although pairs of vehicles are locally stable. Furthermore, an
explicit time delay as introduced in Sec. 2.2 can even lead to local instability.

While τv is always non-negative, i.e., well-defined, it depends on the local traffic situ-
ation as shown in Fig. 2 below for a specific car-following model. To obtain a definition
that is independent of the traffic density, we propose to evaluate Eq. (8) for the limit of
zero vehicle-vehicle interactions, i.e., sα → ∞. In this case, ∂f

∂s
= 0, i.e., ω2

0 = 0, and the
limiting case τv of the general expression τ̃v for the velocity update time is given by

τv =
1

2η
=

−1
(

∂f
∂v

+ ∂f
∂∆v

)∣

∣

∣

e

. (9)

For example, for the Optimal Velocity Model (Bando et al., 1995) defined by the accel-
eration v̇α = (ve(sα) − vα)/τ , we obtain τv = τ .

Finally, we notice that in iterated maps such as the models of Newell or Gipps provid-
ing the update of the velocity directly (and not in terms of integrating an acceleration),
the velocity adaptation time is equal to the numerical update time ∆t. As a consequence,
the Newell model with time step ∆t is equivalent to the Optimal Velocity Model with
Euler update if the update time satisfies ∆t = τv.

2.4 Application to the Intelligent Driver Model

For matters of illustration, we will now apply the concept to the Intelligent Driver Model
(IDM) (Treiber et al., 2000) and discuss the dynamic effects of the three times introduced
in the Secs. 2.1 – 2.3. The IDM acceleration is a continuous function incorporating dif-
ferent driving modes for all velocities in freeway traffic as well as city traffic. Besides the
distance to the leading vehicle and the actual velocity, the IDM also takes into account
velocity differences, which play an essential stabilizing role in real traffic, especially when
approaching traffic jams and avoiding rear-end collisions. The IDM acceleration function
is given by

dvα

dt
= f(sα, vα, ∆vα) = a

[

1 −
(

vα

v0

)4

−
(

s∗(vα, ∆vα)

sα

)2
]

. (10)

This expression combines the acceleration strategy v̇free(v) = a[1 − (v/v0)
4] towards a

desired velocity v0 on a free road with the parameter a for the maximum acceleration with
a braking strategy v̇brake(s, v,∆v) = −a(s∗/s)2 serving as repulsive interaction, when
vehicle α comes too close to the vehicle ahead. If the distance to the leading vehicle,
sα, is large, the interaction term v̇brake is negligible and the IDM equation reduces to
the free-road acceleration v̇free(v), which is a decreasing function of the velocity with
the maximum value v̇(0) = a and the minimum value v̇(v0) = 0 at the desired velocity
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Table 1: Parameters of the Intelligent Driver Model (Treiber et al., 2000) with the values used

in this paper, unless stated otherwise. The vehicle length is assumed to be 5 m but does not play

a role. The value for the acceleration parameter a is the reference; it is varied in the simulations

of Sec. 3.2. The website http://www.traffic-simulation.de provides interactive simulations

and a documentation of the Intelligent Driver Model.

Parameter Value

Desired velocity v0 120 km/h
Desired time gap T 1.5 s
Jam distance s0 2 m
Maximum acceleration a 1 m/s2

Desired deceleration b 2 m/s2

v0. For denser traffic, the deceleration term becomes relevant. It depends on the ratio
between the effective “desired minimum gap”

s∗(v,∆v) = s0 + vT +
v∆v

2
√

ab
, (11)

and the actual gap sα. The minimum distance s0 in congested traffic is significant for
low velocities only. The main contribution in stationary traffic is the term vT which
corresponds to following the leading vehicle with a constant desired time gap T . The
last term is only active in non-stationary traffic corresponding to situations with ∆v 6= 0
and implements an “intelligent” driving behavior including a braking strategy that, in
nearly all situations, limits braking decelerations to the comfortable deceleration b. Note,
however, that the IDM brakes stronger than b if the gap becomes too small. This braking
strategy makes the IDM collision-free (Treiber et al., 2000). To implement the physical
limits for the braking decelerations, we restrict the maximum braking deceleration to
9 m/s2, which is a typical physical limit on dry roads. Since we have observed such
values only in simulations of extreme parameter combinations leading to accidents, this
limit has a negligible influence on the traffic dynamics.

All IDM parameters v0, T , s0, a and b are defined by positive values. These param-
eters have a reasonable interpretation, are known to be relevant, and are empirically
measurable. Moreover, the parameters have realistic values, see Table 1. The IDM has
been calibrated to empirical data of several German freeways (Treiber et al., 2000). On
a more microscopic level, the IDM was tested together with other microscopic models
(Brockfeld et al., 2004). While all models showed large residual errors, the IDM was
one of the best. Furthermore, using the same parameters as in Table 1 (apart from
obvious changes for the desired velocity) both the simulated acceleration behavior from
a standstill and deceleration behavior to a standstill were remarkably close to empirical
observations (Wang et al., 2004, 2005).

Let us now apply the considered characteristic times to the IDM. The update time ∆t is
used in the explicit integration scheme (2) and the reaction time will be (independently
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Figure 2: Coefficients η and ω2

0
of the damped harmonic oscillator (top), and velocity adaptation

time τ̃v according to Eq. (8) (bottom) as a function of the equilibrium velocity ve for the IDM

with the parameters listed in Table 1. For ve ≤ 55 km/h, the adaptation is oscillatory and the

corresponding period of the decaying oscillations is plotted as well.

from ∆t) implemented by the interpolation (3). According to Eq. (9), the velocity
adaptation time for the IDM is given by

τ IDM
v =

v0

4a
(12)

where v0 is the desired velocity and a the maximum acceleration parameter of the IDM.
For the purpose of illustration, Fig. 2 shows the actual velocity adaptation time τ̃v as
a function of the velocity ve of the leader for the parameters of Table 1. Notice that,
for most situations, τ̃v is considerably lower than τv = 8.33 s. This is plausible since,
for ve = v0, there are no constraints from other vehicles, and the relaxation is governed
solely by the acceleration to the desired velocity, and not by decelerations in order to
keep a safe distance to the leader.

The different stabilizing and destabilizing factors of the driver’s behavior and the
vehicle dynamics constitute a non-linear feedback control system as visualized in Fig. 3.
More specifically, the controllers are the drivers, the quantities to be controlled are
the velocity of the own vehicle and the distance to the leading vehicle, and the input
stimuli are the observed distances and velocities, respectively (instead of the velocity
difference, one can take the velocity vα−1 of the leading vehicle as equivalent input).
The actions in order to reach desired values for the velocity and distance consist in
accelerating or braking according to a car-following model, e.g., Eq. (10) in this paper.
In the framework of control theory, this acceleration is represented by a non-linear gain
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function. The control path contains the times discussed in this paper. When interpreting
the update time ∆t to model a restricted attention to the traffic and not just as a
numerical parameter for integrating ODEs, its value represents the time interval where
the drivers are distracted from observing the traffic. After each interval ∆t, the driver
looks at the traffic and takes the additional reaction time T ′ to come to a decision
in terms of a new value for the acceleration function. Finally, it takes the additional
adaptation time τv to implement this decision, i.e., to approach a new velocity by means
of accelerating the vehicle according to the acceleration function.

We emphasize that, in general, the parameter T of the IDM describes a desired “safe”
time gap and is therefore not equivalent to any of the three other times T ′, ∆t, or τv

although it has been set equal to each of these times in the literature (cf. the review
of Helbing (2001)). While the desired time gap T is a characteristic parameter of the driv-
ing style, the reaction time T ′ is essentially a physiological parameter and, consequently,
at most weakly correlated with T . The time gap has, however, a strong influence on the
stability of traffic flow since it determines the upper limit for the cumulative time delays
of the control path from the acceleration to the desired distance.

T’

T’

T’

∆t

∆t

∆t

τv

Non−linear

gain function

a
(T)

x

α

α

α

αv

α−1v

α−1x s

Inte−
grationgration

Inte−

Figure 3: Elements of the feedback loop for the vehicle dynamics of car-following models. The

quantities to be controlled are the distance sα and velocity vα. The control is performed by

the acceleration function of the model representing a non-linear gain function. The feedback

path from the acceleration to the quantities to be controlled contains the characteristic times.

Besides integrative elements incorporating the velocity adaptation time τv, the feedback contains

delay elements representing the update time ∆t and the reaction time T ′ needed to calculate the

acceleration function. The whole circuit is perturbed by the leading vehicle represented by the

external inputs xα−1 and vα−1.

3 SIMULATING TRAFFIC INSTABILITY

3.1 Simulation setup

We have simulated a platoon of 100 vehicles on a single lane following a leader with
externally prescribed velocity vlead(t). As car-following model, we have used the IDM
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with parameters given in Table 1. Initially, and for the first 1000 s of simulation time, the
leader drives constantly at vlead = 25 m/s. Furthermore, all followers are in equilibrium,
i.e., the initial velocities of all platoon vehicles are equal to vlead and the gaps equal to
se(vlead), such that the initial model accelerations are equal to zero. To trigger possible
instabilities, the externally controlled vehicle decelerates from 25 m/s to 19 m/s during
the time interval 1000 s ≤ t ≤ 1003 s, and drives at v′

lead
= 19 m/s afterwards. The non-

linear dynamics resulting from this finite perturbation cannot be handled by lineariza-
tion. Furthermore, to our knowledge, there exists no generalized potential for applying
standard methods of non-linear stability analysis such as the theorems of Lyapunov or
Krasovskii. Therefore, we will investigate the system numerically. [M:]We have also
investigated more realistic scenarios with heterogeneous driver-vehicle pop-
ulations by dividing the driver-vehicle units into two or more groups (e.g.
“cars” and “trucks”) with different values for the desired velocity v0, the
time gap T , the acceleration parameters a and b, and the reaction times (the
update time was always unique). We found that the global traffic dynamics and
the stability behavior is essentially equivalent to using identical driver-vehicle units with
parameters equal to the arithmetic mean of the population.

3.2 Instability due to reaction time and finite acceleration

We have investigated the interplay between the reaction time T ′ and the adaptation time
τv by simulating the platoon using a constant update time of ∆t = 0.1 s. For this value,
the numerical results represent, to a good approximation, the exact solution of the set of
delay-differential equations allowing an investigation independent from the effects of the
update time (which will be investigated in the following section). According to Eq. (12),
the velocity adaptation time for the IDM is mainly influenced by the parameter for the
maximum acceleration a and the desired velocity v0. For sufficiently low values of a, i.e.,
sufficiently high values for τv, the resulting time delay leads to the well-known collective
instabilities, even for zero reaction time (cf. Sec. 1). Clearly, additional delay caused
by a finite reaction time T ′ contributes to traffic instabilities as well. Furthermore, it is
expected that stability always decreases when T ′ increases.

We have simulated the system without reaction time (T ′ = 0 s) and for a fixed reaction
time of T ′ = 0.9 s, and three values for the acceleration parameter a. The results are the
following:

(1) For a = 1.0 m/s2, the system is string stable, i.e., the initial perturbation of 2.0 m/s2

dissipates quickly as shown in the acceleration time series for several vehicles of
Fig. 4 both for T ′ = 0 s and T ′ = 0.9 s.

(2) After lowering the acceleration parameter to a = 0.3 m/s2, the initial perturbation
leads to a small temporary acceleration response for the immediate follower (the
system is locally stable) and also for the next followers up to vehicle 10, but the
accelerations increase again for the subsequent vehicles, and finally lead to a traffic
breakdown in the neighborhood of vehicle 100 at a simulated time t ≈ 1250 s, i.e.,
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the system is string unstable as shown in Fig. 5(a). After the first traffic breakdown,
further stop-and-go waves develop (not shown here).

(3) Remarkably, after increasing the acceleration from the reference value 1.0 m/s2 to
a = 2.5 m/s2, the system becomes string unstable as well, cf. Fig. 5(b). Again,
further stop-and-go waves develop in the course of time further upstream.
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Figure 4: Time series of the acceleration for selected platoon vehicles for zero reaction time

T ′ = 0 s (a), and T ′ = 0.9 s (b). The IDM acceleration parameter is set to a = 1.0m/s2. The

first vehicle induces a perturbation due to the braking maneuver at t = 1000 s. The initial

perturbation dissipates while propagating through the platoon of vehicles, i.e., the system is

string stable.

When varying the maximum acceleration capability, we come to the remarkable result
that stability reaches its maximum for a certain range of values for a that depends on
the reaction time T ′. Traffic flow becomes more unstable if the value of the maximum
acceleration is higher or lower than this value. We checked if these results are robust with
respect to parameter changes and found no qualitative difference for other parameter
sets within a reasonable range. More specifically, by scaling the IDM equations (10)
and (11) with the delay conditions (2) and (3) according to the Buckingham theorem,
conditions for an invariant dynamical and stability behavior can be derived analytically.
Here, it is appropriate to scale time in units of the desired time gap T , and space
in units of v0T . The resulting scaled equations have the same form as the original
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Figure 5: Time series of the acceleration for the same scenario as in Fig. 4(b) with T ′ = 0.9 s,

except for the IDM parameter for the maximum acceleration being reduced to a = 0.3m/s2 (a) or

increased to a = 2.5m/s2 (b). The system is unstable in both cases displaying long-wavelength

collective instability and short-wavelength local instability for a = 0.3m/s2 and a = 2.5m/s2,

respectively. In both scenarios, more stop-and-go waves are triggered further upstream.

expressions when setting the scaled parameters for the desired velocity and time gap to
unity, ṽ0 = T̃ = 1, and replacing the remaining IDM parameters by the scaled quantities
ã = Ta/v0, b̃ = Tb/v0, s̃0 = s0/(v0T ), and the delay parameters by T̃ ′ = T ′/T , and
∆t̃ = ∆t/T . For example, when changing the desired time gap parameter from T = 1.5 s
to T = 0.75 s, the stability remains unchanged if T ′, ∆t, and s0 are divided by a factor
of two, while the accelerations a and b are multiplied by this factor.

In any case, the results are markedly different from the case of zero reaction time where
higher values for a (lower values for τv) always increase the stability. [M:]This can be
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understood by recognizing that there are two different types of instabilities.
The “classical” collective instability mechanism of the IDM is caused by
the time delay due to finite accelerations that is described by the velocity
adaptation time τv. This instability mechanism becomes active for sufficiently
low accelerations (high values of τv) and depends only weakly on the reaction
time T ′. As suggested by the simulation results, we will call this type of
instability the long-wavelength string instability.

For finite reaction times, an additional instability mechanism becomes ac-
tive for sufficiently high accelerations, i.e., low values of τv. Based on the
simulation results, we will call this type of instability the short-wavelength

instability. The two instability types are qualitatively different from each
other in following respects:

• The short-wavelength instability requires finite values for at least one of
the times T ′ or ∆t while the long-wavelength instability hardly depends
on these times.

• The short-wavelength instability can appear as a local instability while
the long-wavelength instability always has the nature of a string instabil-
ity. Particularly, for T ′ → 0 and ∆t → 0 (where only the long-wavelength
instability is possible), the system is always locally stable, i.e., the time
constant defined by Eq. (8) is positive.

• The short-wavelength instability is favoured by an agile driving style
(high accelerations) while a more sluggish style favours the long-wavelength
instability.

Figure 5(a) shows the emergence of the long-wavelength instability in the
plots for the cars 10, and 20. Secondary instabilities of shorter wavelengths
appear only in the non-linear regime (car 50) before a complete breakdown
is observed (car 80).

In contrast, the dominating modes of the second instability mechanism
have a shorter wavelength as can be seen from Fig. 5(b) for the vehicle
sequence 1, 4, and 10. The range for the parameters T ′ and τv for the second mech-
anism is plausible when recognizing that the initial local instability is of the same type
as that for simple feedback loops with delay-time elements, i.e., the velocity adaptation
time in our context. Such systems become unstable if the ratio T ′/τv exceeds a certain
value of the order of unity depending on the specific model, i.e., the system becomes
more susceptible to this type of instability if τv decreases. In contrast, the system be-
comes more susceptible to the classical long-wavelength instability for increasing values
of τv since the velocity adaptation time is the main source for this type of instability.
Notice that these considerations are valid for a wide class of car-following models.

We have investigated this observation more systematically by calculating the instabil-
ity of the system as a function of the reaction time and the acceleration parameter. To
obtain a continuous measure for the instability, we have calculated the variance of the
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Figure 6: System instability measured in terms of the acceleration variance (see the main text)

as a function of the reaction time T ′ (left) and the acceleration parameter a (right) for some

fixed values of a and T ′, respectively. Notice that each point represents a simulation run.

accelerations for the 20 cars 5, 10, 15, . . . , 100 based on the time series for t > 1000 s,
i.e., after having applied the perturbation. Figure 6(a) shows this instability measure as
a function of T ′ for several fixed values of a. We get the following results:

• For a ≥ 1 m/s2, the system is stable for sufficiently small reaction time and the
instability threshold T ′

c(a) decreases with increasing a, which is a signature of the
short-wavelength instability mechanism.

• For a = 0.5 m/s2, the system becomes unstable regardless of the value of T ′, and
the instability measure has only a weak dependence on T ′. This is a signature of
the long-wavelength mechanism.

Obviously, for a given reaction time T ′, there is a certain optimal value for a, or a range
of values, where the system has maximum stability. This is depicted in Fig. 6(b) where
the stability is plotted as a function of a for several fixed values of T ′:

• For T ′ ≤ 0.9 s, the two mechanisms of instability are separated by an optimal range
of the parameter a where the system is completely stable. While, in the long-
wavelength instability range a . 0.6 m/s2, the instability measure depends only
weakly on T ′, the critical acceleration ac at the threshold of the short-wavelength
instability decreases strongly with increasing T ′. For T ′ < 0.6 s, this instability
mechanism is no longer observed for realistic values of a.

• For T ′ = 1.0 s, there is no longer a range of a for complete stability. Instead, both
mechanisms seems to be effective simultaneously in the range of the accelerations
that represented the optimal range for T ′ = 0.9 s.

These findings are summarized in the phase diagram shown in Fig. 7 spanned in param-
eter space by the parameters T ′ and a. Since the initial perturbation leads to a finite
acceleration variance for stable traffic as well, the stable phase has been identified by
values for the acceleration variance below 0.003 (m/s2)2.
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Figure 7: Phase diagram of stable and instable traffic flow spanned by the reaction time T ′ and

the acceleration parameter a. The initial perturbation leads to the long-wavelength collective

instability for small values of a. For higher settings of a, the finite reaction time causes short-

wavelength local instabilities. For a broad range of combinations of (T ′, a), the traffic dynamics

of the vehicle platoon is stable. Interestingly, for higher reaction times, a effectively lower setting

of a is able to reduce the instability of the system due to delayed response to the input stimuli.

3.3 Relation between reaction time and numerical update time

In the simulations of Sec. 3.2, the update time step was so small (∆t = 0.1 s) that it did
not have a significant influence as confirmed by simulations with a smaller update time
steps of, e.g., ∆t = 0.01 s. Investigating much larger update time steps is interesting since
both finite reaction times T ′ and update time steps ∆t introduce delays in the reaction
to the traffic situation, while, a priori, it is not clear if both effects are dynamically
equivalent and, if so, for which pair of values. Moreover, such an equivalence is essential
for interpreting the update time steps of coupled-map models as a reaction time. Finally,
for large ∆t, car-following models become numerically very efficient.

We have systematically investigated the effects of various combinations of T ′ and ∆t
for the system presented above. Figure 8 shows the results in form of a dynamical phase

diagram spanned by both times for two settings of the IDM acceleration parameter
a, while keeping all other parameters constant (see Table 1). The three dynamical
phases are characterized by (i) no instabilities, (ii) instabilities which may be of the
short-wavelength or the collective long-wavelength type but do not lead to crashes, (iii)
instabilities which eventually lead to crashes.

Interestingly, for a given value T0 of either T ′ or ∆t, the combination (T ′ = T0, ∆t ≈ 0)
leads to stronger destabilizing effect than the combination (T ′ = 0, ∆t = T0). To explain
this finding, it is essential to distinguish between the the reaction time T ′ and the update
time ∆t conceptually:

(i) The limiting case ∆t → 0 for finite values T ′ = T0 corresponds to the exact solution
of the time-continuous model for a finite reaction time, i.e., to the delay-differential
equation (3).

(ii) The case ∆t = T0 and T ′ = 0 corresponds to the numerical solution according to
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Figure 8: Phase diagrams of the three dynamical phases for a platoon size of 100 vehicles as

a function of reaction time T ′ and numerical time discretization ∆t. Besides the numerical

necessity for a finite ∆t, the value of ∆t can be interpreted as “attention span”, i.e., as a typical

length of time periods where drivers do not draw their attention to the driving task.

the used integration scheme for zero reaction time, i.e., to a coupled iterated map.

Since the two limiting cases lead to qualitatively different mathematical models they are
obviously not equivalent. Consequently, the phase boundaries of Fig. 8 are not symmetric
with respect to the axes. For example, the parameter combination (∆t = 1 s, T ′ = 0.5 s)
corresponds to stable traffic while (∆t = 0.5 s, T ′ = 1 s) leads to crashes. Therefore,
for the same numerical values, the reaction time introduces stronger destabilizing effects
than the update time.

Remarkably, the borderline between stable and oscillatory platoons is approximately
given by ∆t+2T ′ = C with, e.g., C = 2 s in Fig. 8(a). This means, the destabilizing effect
of a finite reaction time is about twice that of a finite update time interval of the same
numerical value, or, cum grano salis, the effective reaction time introduced by a finite
update time interval is about T ′

eff
≈ ∆t/2. This is consistent with the considerations

summarized in Fig. 1.
This interchangeability between update time and reaction time allows for an impor-

tant conclusion regarding the numerical efficiency of the models: Since, in contrast to
simulating DDEs, large numerical update times are numerically efficient, one can sim-
ulate a given reaction time T ′ by iterated maps or by time-continuous models of the
type (1) together with the trapezoidal numerical update scheme (2) by choosing an up-
date time ∆t = 2T ′. Modelling reaction times in this way, however, is restricted to
identical reaction times for all drivers.

4 DISCUSSION AND CONCLUSIONS

We have investigated the three characteristic time constants that influence the dynamics
and stability of traffic flow: (i) The delay caused by the finite reaction time of the drivers,
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(ii) the time lag due to a finite velocity adaptation time needed to accelerate to a new
desired velocity, and (iii) the numerical update time. We presented a general microscopic
modeling approach for the independent implementation of these three times for time-
continuous car-following models, i.e., models that are represented by ordinary differential
equations. Apart from the IDM (Treiber et al., 2000), examples include the Optimal
Velocity Model (Bando et al., 1995), or the Velocity Difference Model (Jiang et al., 2001).

Introducing reaction times to this class of traffic models lead to time-delayed differ-
ential equations. On the other hand, simulating such models with zero reaction time
and using an explicit integration scheme with comparatively large update time is equiv-
alent to simulating iterated maps such as the model of Gipps (1981), or the model
of Newell (1961). Often, the update time of these models is interpreted as reaction time
as well, although, iterated maps are qualitatively different from delay-differential equa-
tions. Moreover, in the absence of these two times, traffic instabilities can also be caused
by the finite time needed to adapt the velocity to a new desired value (as demonstrated,
e.g., by the IDM), and also this time is sometimes called “reaction time”.

In this work, we have clarified the role of each of these times by simulating the local
and string stability of a platoon of vehicles based on the Intelligent Driver Model (IDM)
for various combinations of the three times. We used the IDM just as an example.
The results are valid for other time-continuous and coupled-map car-following models
as well. We found that, in fact, the reaction time and the update time have a similar
dynamical effect since both introduce instabilities via “short-wavelength mechanisms”
that can be both local or collective in nature, while the velocity adaptation time triggers
instabilities exclusively via collective long-wavelength instabilities. Moreover, we have
shown that the instability effect of finite update times of numerical integration schemes
is comparable to that of delay-differential equations when the value of the reaction time
is half that of the update time. This is consistent with the considerations summarized
in Fig. 1 and the fact that the update rule (2) is equivalent to the trapezoidal rule, i.e.,
updating the positions by using the average of the “old” and “new” velocities. Since this
rule is applied in most iterated maps such as the Newell model, the “reaction time” ∆t
of such models corresponds, in fact, only to about half the actual reaction time delay.

Furthermore, it is more plausible to interpret the value of ∆t as a typical length of
time periods where drivers do not draw their attention to the driving task and, conse-
quently, do not perform actions such as adapting the acceleration to the actual situation.
Therefore, finite update times ∆t can be used to model distractions and an “restricted
attention span” that, in addition to reaction times, may play an important role in the
driving behavior of humans (Boer, 1999).

When comparing the reaction time with the velocity adaptation time, we obtain the
interesting result that the optimal acceleration (and deceleration) to obtain a maximum
of stability depends on the reaction time: The higher the reaction time, the lower the
optimal accelerations. Therefore, a finite reaction time of 1 s can be partially compensated

by an optimal, i.e., effectively lowered acceleration capability. This is consistent with
the observation that people with comparatively long reaction times typically drive less
aggressively than the average. Note, however, that, for T ′ ≤ 0.8 s, the minimum is rather
flat.
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With the advent of driver-assistance systems for (partly) automated driving such
as autonomous accelerating and braking by means of adaptive cruise control (ACC),
an understanding of the different mechanisms leading to traffic instabilities and their
implementation in terms of mathematical models becomes even more relevant. It is
crucial to understand the effects of ACC systems on the capacity and stability of traffic
flow at an early stage so that their design can be adjusted before adverse traffic effects
will be widely manifested. Both human drivers and ACC systems show finite delay times
although the origins are fundamentally different. In real ACC systems, they are the result
of a complex control path involving the motor control unit and the braking control system
(Kranke et al., 2006). While the human reaction times generally are higher, human
drivers compensate for the destabilizing effects of reaction time by anticipation, e.g.,
by looking several vehicles ahead, anticipating the future traffic situation, and adapting
to the traffic environment (Treiber et al., 2006a,b). It is a current research topic to
introduce at least temporal anticipation to ACC systems.
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