Solutions to the
 Examination for the Master's Course Methods of Econometrics, winter semester 2023/24

Problem 1

Person	1	2	3	4	5	6	7	8	9	10
Cost PT [€]	2.00	2.00	2.00	0.00	0.00	2.00	2.00	2.00	2.00	0.00
Cost car [€]	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00	3.00	2.00
Time PT [min]	30	40	50	40	50	60	30	40	50	40
Time car [min]	30	30	30	30	30	30	30	30	30	25
Daytime	day	night	day	night	day	night	day	night	night	night
Gender	m	m	m	m	m	m	f	f	f	f
Decision	PT	PT	car	PT	PT	car	PT	car	PT	car

(a) Stated choice/preverence because it is asked "under which circumstances they would ...", so it is a hypothetical situation
(b) Characteristics: Costs C_{i} and times T_{i}; socioecomomic variable: gender G ($0=$ male, $1=\mathrm{fe}-$ male); external variable: daytime D ($0=$ day, $1=$ night).
(c) Given: binomial Logit model with

$$
V_{i}=\beta_{1} \delta_{i 1}+\beta_{2} C_{i}+\beta_{3} T_{i}+\beta_{4} D+\beta_{5} G D,
$$

The characteristics T_{i} and C_{i} are modelled in a generic way since the same parameters β_{2} and β_{3} are defined for the costs and times for both alternatives, respectively.
(d) Meaning of the parameters:
$-\beta_{2}$: cost appraisal/sensitivity, <0 expected
$-\beta_{3}$: travel time sensitivity, <0 expected

- β_{4} : additional PT preference (for men) in the night compared to day (no clear sign)
- β_{5} : additional PT preference in the night for woman compared to men (generally negative because of security)
- note (not required): $\beta_{4}+\beta_{5}$: additional PT preference for women in the night compared to day
(Not required): The intercept β_{1} means the ad-hoc preference PT over cars for males at daylight if the trip costs zero and can be performed instantaneously ("free beaming").
Hint: Be specific! Something like β_{4} : parameter for the night or β_{5} : "influence of the weather" will not do!
(e) Parameter values as given in the problem statement:

$$
\hat{\beta}_{1}=3.12, \quad \hat{\beta}_{2}=-1.08, \quad \hat{\beta}_{3}=-0.199, \quad \hat{\beta}_{4}=0.39, \quad \hat{\beta}_{5}=-2.42
$$

For the first person, we have

$$
C_{1}=C_{2}=2, T_{1}=T_{2}=30, D=0, G=0 .
$$

Inserting this in the model in (c), we have

$$
V_{1}=-5.01, \quad V_{2}=-8.13
$$

Still easier: One could also calculate directly the utility difference $V_{1}-V_{2}=\hat{\beta}_{1}=3.12$). Using the general equation for the binary Logit model (MNL for 2 alternatives), we have

$$
P_{1}=\frac{e^{V_{1}}}{e^{V_{1}}+e^{V_{2}}}=\frac{1}{1+e^{V_{2}-V_{1}}}=0.958, \quad P_{2}=1-P_{1}=0.0423 .
$$

(f) Property sums as given by the data and estimate for the model with $\hat{\boldsymbol{\beta}}=\mathbf{0}$ resulting in $P_{1}=P_{2}=1 / 2:$

- Factor 1:

$$
\begin{aligned}
& X_{1}^{\text {data }}=\sum_{n} \sum_{i} y_{n i} \delta_{i 1}=\sum_{n} y_{n 1}, \\
& X_{1}^{\mathrm{MNL}}(\hat{\boldsymbol{\beta}}=\mathbf{0})=\sum_{n} \sum_{i} y_{n i} P_{n i} \delta_{i 1}=\sum_{n} y_{n 1} / 2=N_{1} / 2,
\end{aligned}
$$

so $X_{1}=\#$ realized $/$ modelled decisions for PT:

$$
X_{1}^{\text {data }}=N_{1}=6, \quad X_{1}^{\mathrm{MNL}}(\hat{\boldsymbol{\beta}}=\mathbf{0})=N / 2=5
$$

- Factor 2: $X_{2}=\#$ realized/modelled total cost:

$$
X_{2}^{\text {data }}=17, \quad X_{2}^{\mathrm{MNL}}(\hat{\boldsymbol{\beta}}=\mathbf{0})=36 / 2=18
$$

- Factor 4: $X_{4}=\#$ realized/modelled \# PT decisions in the night:

$$
X_{4}^{\text {data }}=3, \quad X_{4}^{\mathrm{MNL}}(\hat{\boldsymbol{\beta}}=\mathbf{0})=6 / 2=3
$$

- Factor 5: $X_{5}=$ \# realized/modelled \# PT decisions by women in the night:

$$
X_{5}^{\text {data }}=1, \quad X_{5}^{\mathrm{MNL}}(\hat{\boldsymbol{\beta}}=\mathbf{0})=3 / 2=1.5 .
$$

Note: There was a printing error in the exam formulation (the $\delta_{i 1}$ selectors were missing at the $\beta_{4} D$ and $\beta_{5} G D$ terms of the utility specification) changing the values of the factors 4 and 5. Of course, the changed values got full marks, if correct.
(g) Value of time:

$$
\operatorname{VoT}=\hat{\beta}_{3} / \hat{\beta}_{2}=0.184 € / \mathrm{min} \quad \text { or } \quad \operatorname{VoT}[€ / \mathrm{h}]=60 \hat{\beta}_{3} / \hat{\beta}_{2}=11.06 € / \mathrm{h} .
$$

The additional willingness of woman to pay (WtP) for a car in the night compare to men is given in utility units by $-\hat{\beta}_{5}$. In $€$, it is given by

$$
\mathrm{WtP}=\frac{-\hat{\beta}_{5}}{-\hat{\beta}_{2}}=2.24 €
$$

(h) Likelihood-ratio test for the full model (c) with 5 parameters compared to the restrained model without daytime and gender effects (3 parameters):

1. H_{0} : Both model have the same explanative power.
2. Test function $T=\left.2\left(\tilde{L}_{\text {full }}-\tilde{L}_{\text {restr }}\right) \sim \chi^{2}(5-3)\right|_{H_{0}}$.
3. Realisation: $t_{\text {data }}=2(-4.26+6.27=4.02$.
4. Decision: H_{0} rejected at $\alpha=5 \%$ if (cf. the χ^{2} quantile table on the last page)

$$
t_{\mathrm{data}}>\chi_{2,0.95}^{2}=5.99 \Rightarrow \text { cannot be rejected. }
$$

Remark (not required): Not even the trivial model with no parameters ($\hat{\boldsymbol{\beta}}=\mathbf{0}$) is significantly worse than the full model:

$$
\left.T \sim \chi^{2}(5)\right|_{H_{0}}, \quad t_{\text {data }}=2\left(-4.26+6.93=5.34, \quad \chi_{5,0.95}^{2}=11.07 \Rightarrow\right. \text { no rejection. }
$$

Hint: Variance-based tests such as the χ^{2}, likelihood-ratio or F tests are always testing for small deviations/variances, hence they are one-sided tests with the quantile $t_{1-\alpha}$ the relevant one.

Problem 2

Given model for the energy consumption on aroad segment of length L :

$$
y=\beta_{1} L+\beta_{2} T+\beta_{3} h+\beta_{4} L v^{2}+\beta_{5} L \vartheta+\epsilon, \quad \epsilon \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

(a) All factors are proportional to L, T, or h. Therefore, an intercept would be the energy demand for a segment of length $L=0$ and altitude increase $h=0$ covered in the travel time $T=0$ which, obviously, needs no energy.
(b) $\quad-\beta_{1}$: constant energy demand per length, i.e. (see the problem statement) a resistance force on level roads not depending on speed, i.e., β_{1} is proportional to the constant friction force. >0 expected.
Note (not required): more precisely, we have the friction force $F=m g \mu$ allowing to estimate the friction coefficient $\mu=\beta_{1} /(m g)$, e.g., $\mu=0.015$ for a car weighting 1400 kg . > 0 expected.
$-\beta_{2}$: energy demand per time (power) if $L=0$ and $h=0$, i.e., β_{2} is equal to the standby power P_{0} (ventilation, AC, electrical appliances, radio) for a standing but active car. >0 expected.
$-\beta_{3}$: According to the problem statement, the energy for climbing is the gravitational force times h, so β_{3} is equal to the gravitational force $m g$, i.e., ($n o t$ required) the average mass of the tested vehicles can be estimated as $m=\beta_{3} / g=1600 \mathrm{~kg} .>0$ expected.
$-\beta_{4}$ is proportional to the force (energy contribution per length) proportional to v^{2}, i.e., relates to the wind drag. >0 expected.

Note (not required): more precisely, the wind drag force is given by $F_{w}=1 / 2 c_{d} \rho_{\text {air }} A v^{2}$ allowing to estimate the wind drag coefficient $c_{d}=2 \beta_{4} /\left(\rho_{\text {air }} A\right)$ with the air density $\rho_{\text {air }}=1.3 \mathrm{~kg} / \mathrm{m}$ at sea level and the frontal area $A=2 \mathrm{~m}^{2}$, typically. With these values, we obtain $c_{d}=0.31$ which is a typical value for modern cars.
$-\beta_{5}$ is proportional to the speed variance and characterizes the additional energy losses by the braking maneuvers (note that β_{5} is smaller for electrical vehicles which can recuperate part of the kinetic energy instead of transforming it to heat at the brakes).
Hint: As always when explaining parameters: be specific: Describe the parameters, not the factors. For example β_{2} : "time sensitivity" or β_{2} : "related to time" will not give any points in the future!
(c) $n=25$ data points, LSE estimate (expectation \pm standard deviation)
$\hat{\beta}_{1}=210 \pm 50, \quad \hat{\beta}_{2}=2100 \pm 700, \quad \hat{\beta}_{3}=16000 \pm 2000, \quad \hat{\beta}_{4}=0.4 \pm 0.1, \quad \hat{\beta}_{5}=0.5 \pm 0.3$.
speed $v=L / T=25 \mathrm{~m} / \mathrm{s}$, needed energy

$$
y=1000 \hat{\beta}_{1}+40 \hat{\beta}_{2}+30 \hat{\beta}_{3}+1000 * 25^{2} \hat{\beta}_{4}+0=1024000 \mathrm{Ws}
$$

Hint: $3 \%{ }^{*} 1000 m=30 m$, not 0.3 m !
(d) As above, we obtain

$$
y=1000 \hat{\beta}_{1}+40 \hat{\beta}_{2}-60 \hat{\beta}_{3}+1000 * 25^{2} \hat{\beta}_{4}+0=-416000 \mathrm{Ws}
$$

This energy is negative because the gravitational downhill force is greater than the friction force, the wind drag, and the force to generate the standby power together. In internal combustion vehicles (gasoline, Diesel) this gravitational energy is lost and the model breaks down.

Note (not required): In battery-electric vehicles, the gravitational energy can be partially recuperated in battery-electric vehicles. The model remains valid for full recuperation; otherwise, it needs to be modified.
(e) Since the value of the speed in km / h is 3.6 times the value in m / s, the parameter $\hat{\beta}_{4}$ and $\hat{\beta}_{5}$ need to be multiplied by $1 / 3.6^{2}$ (speed squared and speed variance in $(\mathrm{km} / \mathrm{h})^{2}$ have 3.6^{2} the value of speed squared and speed variance in $(\mathrm{m} / \mathrm{s})^{2}$ but the energy is, of course, unchanged).
(f) Why it is a bad idea to add an additional factor $\beta_{6} v T$? The associated factor $v T=$ $L / T * T=L$ is identical to the factor of β_{1}, so we would have multi-colinearity violating one of the data Gauß-Markow assumptions.
(g) $H_{01}: \beta_{2}=0$:

$$
T=\frac{\hat{\beta}_{2}}{\sqrt{\hat{V}_{22}}} \sim T(25-5)=\left.T(20)\right|_{H_{0}}, \quad t_{\text {data }}=\frac{2100}{700}=3
$$

H_{0} is rejected if

$$
\left|t_{\text {data }}\right|>t_{0.975}^{(20)}=2.086 \Rightarrow \text { rejected }
$$

$H_{02}: \beta_{2}<1000:$

$$
T=\frac{\hat{\beta}_{2}-1000}{\sqrt{\hat{V}_{22}}} \sim T(25-5)=\left.T(20)\right|_{H_{0}}, \quad t_{\text {data }}=\frac{1100}{700}=1.57
$$

H_{0} is rejected if

$$
t_{\text {data }}>t_{0.95}^{(20)}=1.725 \Rightarrow \text { not rejected }
$$

Notice: In the second test, we have $t_{\text {data }}$, not $\left|t_{\text {data }}\right|$, and the critical value is given by the $95^{\text {th }}$ percentile, not the $97.5^{\text {th }}$ percentile because the errors over which to distribute the error probability $\alpha=5 \%$ can only be on the right-hand side, not on both.
(h) Expactation and variance of the parameter $\beta_{4}^{\prime}=\beta_{4}+\gamma \beta_{5}$ of the offline model, with constant $\gamma=0.4$

Expectation:

$$
\hat{\beta}_{4}^{\prime}=\hat{\beta}_{4}+\gamma \hat{\beta}_{5}=0.6
$$

Variance:

$$
V\left(\hat{\beta}_{4}^{\prime}\right)=V\left(\hat{\beta}_{4}\right)+\gamma^{2} V\left(\hat{\beta}_{5}\right)+2 \gamma V_{45}=0.1^{2}+\gamma^{2} 0.3^{-} 2 \gamma V_{45}=0.0196
$$

Problem 3 (30 points)

Given is an e-bike with following main components:

- Iron/steel (motor, chain, gear shift, etc): $7 \mathrm{~kg}\left(\mathrm{CO}_{2}\right.$-neutral recycling: $\left.30 \%\right)$
- Aluminum (frame, wheels): 12 kg (recycling 50%)
- Battery: 5 kg (recycling 0%)
- Other materials (rubber, plastic etc): 1 kg (recycling 20%).
(a) Life-cycle repository with an energy need of $y_{5}^{s}=1 / 15 \mathrm{kWh} / \mathrm{km} * 30000 \mathrm{~km}=2000 \mathrm{~kg}$:

$$
\begin{aligned}
\boldsymbol{y}^{s}=\boldsymbol{y}_{\text {prod }}^{s}+\boldsymbol{y}_{\text {drive }}^{s}+\boldsymbol{y}_{\text {rec }}^{s} & =\left(\begin{array}{c}
7 \mathrm{~kg} \\
12 \mathrm{~kg} \\
5 \mathrm{~kg} \\
1 \mathrm{~kg} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
5 \mathrm{~kg} \\
0 \\
2000 \mathrm{kWh}
\end{array}\right)+\left(\begin{array}{c}
-2.1 \mathrm{~kg} \\
-6 \mathrm{~kg} \\
0 \\
-0.2 \mathrm{~kg} \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
4.9 \mathrm{~kg} \\
6 \mathrm{~kg} \\
10 \mathrm{~kg} \\
0.8 \mathrm{~kg} \\
2000 \mathrm{kWh}
\end{array}\right)
\end{aligned}
$$

Note: The energy demand in the exam formulation was unrealistically low (0.1 kWh per 15 km instead of 1 kWh per 15 km) and it is now increased by a factor of 10 in the repository. Of course, the correspondingly different solutions got full marks if correct.
(b)

$$
e_{\mathrm{CO}_{2}}=e_{1}=\boldsymbol{C}^{\prime} \boldsymbol{y}^{s}=1261 \mathrm{~kg}
$$

(c) - Scenario I, charging in France at $C_{5}=50 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}^{2}$ instead of $C_{5}=400 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$:

$$
e_{1}=C^{\prime} \boldsymbol{y}^{s}=561 \mathrm{~kg}
$$

- Scenario II, Use a smaller battery/a durable battery: $y_{3}^{s}=5 \mathrm{~kg}$ instead of 10 kg :

$$
e_{1}=\boldsymbol{C}^{\prime} \boldsymbol{y}^{s}=1111 \mathrm{~kg}
$$

- Scenario III, tread more, so a total energy of $y_{5}^{s}=1000 \mathrm{kWh}$ instead of 2000 kWh :

$$
e_{1}=\boldsymbol{C}^{\prime} \boldsymbol{y}^{s}=861 \mathrm{~kg} .
$$

(d) Conventional bike with the same 30000 km of riding: The rider needs additional food of the amount y_{s} in carbohydrates which, per kg of carbohydrates, leads to $C_{5}=3.5 \mathrm{~kg}+2.5 \mathrm{~kg}$ of CO_{2} emissions. Thus, we have

$$
y_{5}^{s}=30000 \mathrm{~km} * 0.004 \mathrm{~kg} / \mathrm{km}=120 \mathrm{~kg} \text { carbohydrates }
$$

and

$$
C_{5}=3.5 \mathrm{~kg} / \mathrm{kg}+2.5 \mathrm{~kg} / \mathrm{kg}=6[\mathrm{~kg} \mathrm{CO} 2 \text { per kg of carbohydrates }]
$$

Thus, without a battery and carbohydrates as "fuel"

$$
\boldsymbol{y}^{s}=\left(\begin{array}{c}
1.4 \mathrm{~kg} \\
4 \mathrm{~kg} \\
0 \\
0.8 \mathrm{~kg} \\
120 \mathrm{~kg}
\end{array}\right), \quad \boldsymbol{C}=\left(\begin{array}{c}
2 \\
25 \\
30 \\
1 \\
6
\end{array}\right) .
$$

The usual scalar product leads to a CO_{2} - emission of

$$
e_{1}=\boldsymbol{C}^{\prime} \boldsymbol{y}^{s}=824 \mathrm{~kg}
$$

of which the greatest part $C_{5} y_{5}^{s}=720 \mathrm{~kg}$ are emitted by additional human breathing during driving. Remarkably, the ecological CO_{2} - footprint of conventional non-motorized bicycles over the lifetime is only a little better than that of e-bikes in Germany, and worse than e-bikes in France. The reason is that the "fuel combustion" of carbohydrates or other nutrients in the human body has a very low efficiency, and that making the food (in a way corresponding to the w2t emissions of gasoline or Diesel) is very CO_{2} intensive as well. This overcompensates for the lighter bicycle and the missing CO_{2}-intensive battery.

