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11.1 Parameter Nonlinear Models

Application: Determining subjective thresholds/indifference regions

Person
class

Time
Alternative 1
[min]

Time
Alternative 2
[min]

Choice
Alt. 1

Choice
Alt. 2

1 25 30 11 10
2 30 30 10 10
3 35 30 10 10
4 40 30 9 11
5 45 30 5 15
6 50 30 2 15
7 55 30 1 15
8 60 30 0 15
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Modelling the threshold

Vn1 − Vn2 = β1 + β2

[
∆Tn + β3 tanh

(
∆Tn
β4

)]

β̂1 = 0.043± 0.236 AC

β̂2 = −0.29± 0.38 asymptotic time sensitivity

β̂3 = −15± 18 degree of nonlinearity ≥ −β4
β̂4 = 14± 21 threshold width

!! Generally, L(β) has no longer a
unique maximum, here, because of

β3 tanh

(
∆Tn
β4

)
= −β3 tanh

(
∆Tn
−β4

)
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The reverse: Increased sensitivity at reference point

Person
class

Time
Alternative 1
[min]

Time
Alternative 2
[min]

Choice
Alt. 1

Choice
Alt. 2

1 25 30 16 7
2 30 30 10 10
3 35 30 7 20
4 40 30 3 20
5 45 30 3 25
6 50 30 2 30
7 55 30 1 17
8 60 30 2 50

Such increased sensitivity at the reference (here: equal trip times) is proposed by the
Prospect Theory of Kahneman/Twersky in certain situations
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Vn1 − Vn2 = β1 + β2

[
∆Tn + β3 tanh

(
∆Tn
β4

)]
β̂1 = −0.08± 0.25,

β̂2 = −0.05± 0.10,

β̂3 = 27± 101,

β̂4 = 10± 16

Modelling the increased sensitivity
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Four further models applied to the threshold data
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11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

I Destination and mode choice

I Destination city and job offers when about to moving

I Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed
random utilities in the associated alternative sets, so the total random utility is correlated

⇒ Red-Bus-Blue-Bus problem.

⇒ How to model this while retaining explicit expressions for the choice probabilities?
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MNL: The Red-Bus-Blue-Bus Problem

Times and costs equal,
AC zero
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100% correlated random utilities: Problem solved!

Car and public transport
have equal times and costs,
AC zero
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Nontrivial nested decision: partial correlations

All three modes
have equal times and costs,
AC zero

Average PT utiliy higher than that of bus or tram alone
because some prefer tram, some bus
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Nontrivial nested decision: partial correlations

All three modes
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The general GEV generating function

All the GEV models are defined via a Generating function G(y) = G(y1, ..., yI)
satisfying following formal conditions:

I Not negative: G(y) ≥ 0 for all y,

I Asymptotics: G→∞ if any yi →∞,

I Sign of derivatives:

Gi ≡
∂G

∂yi
≥ 0,

Gij ≡
∂2G

∂yi ∂yj
≤ 0 if i 6= j,

Gijk ≥ 0 and so on,

I Homogeneity of degree 1: G(αy) = αG(y)
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The Nobel-Price winning result of McFadden et. al.

Any GEV function G(y) satisfying the above four conditions

I generates a random vector ε satisfying a generalized extreme-value distribution with
the distribution function

F (e) = P (ε1 ≤ e1, ..., εI ≤ eI) = e−G(y) with yi = e−ei

I has analytic choice probabilities when maximizing the total utilities Ui = Vi + εi:

Pi =
yiGi(y)

G(y)
with Gi =

∂G

∂yi
, yi = e+Vi

? Check why the above conditions for G(y) must be true
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Question: Check the conditions for G(y)

? Why G(y) ≥ 0 for all y?

! Because a distribution function F = e−G must be ≤ 1 (the condition F ≥ 0 is
satisfied automatically)

? Why G→∞ if any yi →∞?

! If yi →∞ then the argument ei = − ln yi of the distribution function tends to −∞.
Since the corresponding random variable εi is always > −∞, we have F = e−G = 0,
hence G→∞

? Sign of derivatives of G?

! We check only the first derivative Gi = ∂G
∂yi

. We have Pi = yiGi/G with Pi,

yi = e−ei and G because of the first requirement all ≥ 0. Hence Gi ≥ 0. The other
conditions follow from the non-negativity of the distribution functions

? Homogeneity G(αy) = αG(y) for any α > 0?

! Because of Pi = yiGi/G and the scaling invariance P (ε1 < e1) = P (λε1 < λe1) with
α = eλ
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Special Case I: Multinomial-Logit

I Generating function:

G(y)MNL =

I∑
j=1

yj

I Distribution function of the random utilities (RUs):

F (e) = exp
[
−G

(
e−e1 , ...

)]
= exp

(
−
∑
j

e−ej
)

=
∏
j

exp
(
−e−ej

)
⇒ εi ∼ i.i.d. Gumbel

I Choice probabilities:

Gi =
∂G

∂yi
= 1,

Pi =
yi∑I
j=1 yj

=
exp(Vi)∑I
j=1 exp(Vj)
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Special Case II: Two-level Nested Logit model

I Hierarchical decision: i = (l,m), l: top-level alternatives, m second-level alternatives
depending on l

I Generating GEV function:

GNL(y) =

L∑
l=1

( Ml∑
m=1

y
1/λl

lm

)λl

where λl ∈ [0, 1] determine the correlations of the RUs in “nest” l:

I λl → 1: Limit of MNL, zero correlation ⇒ check it!
I λl → 0: no RUs inside the nests, correlation=1: sequential model: blue and red

buses

I Distribution of the RUs:

F (e) = exp

[
−
∑
l

(∑
m

e−elm/λl

)λl ]
=
∏
l

exp

[
−

(∑
m

e−elm/λl

)λl ]
=

∏
l

Fl(el)⇒ independent at top level
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e−elm/λl

)λl ]
=
∏
l

exp

[
−

(∑
m

e−elm/λl

)λl ]
=

∏
l

Fl(el)⇒ independent at top level
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Special Case II: Two-level Nested Logit model
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Nested Logit choice probabilities

Insert GNL(y) into the general expression Pi = yiGi/G:

Pi = Plm = PlPm|l =
eVlm/λl

(∑
m′ eVlm′/λl

)λl−1∑
l′
(∑

m′ eVl′m′/λl′
)λl′

⇒ complicated and non-intuitive!
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A more intuitive form of the NL choice probabilities

I Set/assume Vlm = Wl + Ṽlm
I Wl: top-level contributions not appearing inside the nests
I Ṽlm: inner contributions of alternative m in nest l

I Then, the NL choice probabilities can be formulated as

Plm = PlPm|l, Pl =
eWl+λlIl∑
l′ e

Wl′+λl′Il′
, Pm|l =

eṼlm/λl∑
m′ eṼlm′/λl

with the inclusion values Il = ln

(∑
m

eṼlm/λl

)
(calibrate first eṼlm/λl , then de-
termine λl with fixed Il in the
outer MNL calibration)

? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by λlIl. Because for
these assumptions Pl has the normal MNL form

? Show that λlIl is at least as high as the utility Ṽlm∗
l

of the best alternative within the nest and that

λlIl = Ṽlm∗
l

for λl → 0. All contributions of the sum inside the log are exponentials and thus positive.
Furthermore, the ln function is strictly monotonously increasing. Hence, λlIl is larger than any single Ṽlm
including the maximum. For λl → 0, only the maximum contributes to the sum

? Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal
MNL Independent because Plm = PlPm|l, MNL for the utilities Ṽlm/λl for fixed l
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eṼlm/λl

)
(calibrate first eṼlm/λl , then de-
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m′ eṼlm′/λl

with the inclusion values Il = ln

(∑
m
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l

for λl → 0. All contributions of the sum inside the log are exponentials and thus positive.
Furthermore, the ln function is strictly monotonously increasing. Hence, λlIl is larger than any single Ṽlm
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11.2.3 Example: Combined Destination and Mode Choice
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Combined destination and mode choice: the data

Per-
son
group

T
[min]
Emma,
PT

T
[min]
Emma,
car

T [min]
superm,
PT

T [min]
superm,
car

Fridge
fill
level
F

y11 y12 y21 y22

1 25 15 25 20 0.9 1 2 0 0
2 25 30 40 30 0.8 3 0 0 1
3 20 20 30 30 0.7 2 1 1 1
4 25 10 25 10 0.6 0 3 0 2
5 15 5 30 20 0.5 1 2 0 2
6 15 15 25 20 0.4 1 1 0 1
7 15 20 45 45 0.3 3 1 0 1
8 15 15 15 15 0.2 1 0 2 3
9 25 15 40 30 0.1 1 1 0 1

10 25 10 25 20 0.0 0 1 1 3
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Conditional modal splits

Observed and modelled modal split when
driving to “Aunt Emma”

Pm|n1 =
exp(Ṽn1m/λ1)∑
m′ exp(Ṽn1m′/λ1)

,

Ṽn1m/λ1 = β1Tn1m + β2δm1,

β̂1 = −0.18, β̂2 = +0.88

Observed and modelled modal split when
driving to the supermarket

Pm|n2 =
exp(Ṽn2m/λ2)∑
m′ exp(Ṽn2m′/λ2)

,

Ṽn2m/λ2 = β3Tn2m + β4δm1,

β̂3 = −0.29, β̂4 = −0.42
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Top-level choice of the type of shop

Choice of the type of shop:
“Aunt Emma” vs supermarket:

Pnl =
exp(Wnl + λlInl)∑
l′ exp(Wnl′ + λ′lInl′)

Wnl = β5Fnδl1 + β6δl1

In1 = ln

[∑
m

exp
(
β̂1Tn1m + β̂2δm1

)]
In2 = ln

[∑
m

exp
(
β̂3Tn2m + β̂4δm1

)]

β̂5 = 2.9, β̂6 = −2.0, λ̂1 = 0.17, λ̂2 = 0.21.



Econometrics Master’s Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

Final combined probabilities

Combined
nested choice of
shop type and
transport mode

Pni = PnlPm|nl
= Prob(destination)*Prob(mode|destination)
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Counter check: normal MNL

Pni =
exp(Vni)∑4
i′=1 exp(Vni′)

V1 = β1T1 + β2 + β5F + β6 (l,m) = (1, 1) Emma+PT
V2 = β1T2 + β6 + β5F (l,m) = (1, 2) Emma+car
V3 = β3T3 + β4 (l,m) = (2, 1) supermarket+PT
V4 = β3T4 (l,m) = (2, 2) supermarket+car

β̂1 = −0.15, β̂2 = 0.60, β̂3 = −0.09, β̂4 = −0.84, β̂5 = 3.49, β̂6 = −1.76
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11.3 Advanced I: Mixed-Logit Models

if time allows, see German script, Sec. 4.14
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