11 Advanced Concepts of Discrete-Choice Theory

- 11.1 Parameter Nonlinear Models
- 11.2 GEV and Nested Logit Models
- 11.2.1 General Specification
- 11.2.2 Nested Logit Model
- 11.2.3 Example: Combined Destination and Mode Choice
- 11.3 [Advanced I: Mixed-Logit Models (German script)]
- 11.4 [Advanced II: How to Assess Reliability (German script)]

11.1 Parameter Nonlinear Models

Application: Determining subjective thresholds/indifference regions

Person class	Time Alternative 1 $[\mathrm{min}]$	Time Alternative 2 [min]	Choice Alt. 1	Choice Alt. 2
1	25	30	11	10
2	30	30	10	10
3	35	30	10	10
4	40	30	9	11
5	45	30	5	15
6	50	30	2	15
7	55	30	1	15
8	60	30	0	15

Modelling the threshold

$V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right]$

Modelling the threshold

$$
\begin{aligned}
V_{n 1} & -V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right] \\
\hat{\beta}_{1} & =0.043 \pm 0.236 \mathrm{AC}
\end{aligned}
$$

Modelling the threshold

$V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right]$
$\hat{\beta}_{1}=0.043 \pm 0.236 \mathrm{AC}$
$\hat{\beta}_{2}=-0.29 \pm 0.38$ asymptotic time sensitivity

Modelling the threshold

$V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right]$
$\hat{\beta}_{1}=0.043 \pm 0.236 \mathrm{AC}$
$\hat{\beta}_{2}=-0.29 \pm 0.38$ asymptotic time sensitivity
$\hat{\beta}_{3}=-15 \pm 18$ degree of nonlinearity $\geq-\beta_{4}$

Modelling the threshold

$V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right]$
$\hat{\beta}_{1}=0.043 \pm 0.236 \mathrm{AC}$
$\hat{\beta}_{2}=-0.29 \pm 0.38$ asymptotic time sensitivity
$\hat{\beta}_{3}=-15 \pm 18$ degree of nonlinearity $\geq-\beta_{4}$
$\hat{\beta}_{4}=14 \pm 21$ threshold width

Modelling the threshold

$V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right]$
$\hat{\beta}_{1}=0.043 \pm 0.236 \mathrm{AC}$
$\hat{\beta}_{2}=-0.29 \pm 0.38$ asymptotic time sensitivity $\hat{\beta}_{3}=-15 \pm 18$ degree of nonlinearity $\geq-\beta_{4}$ $\hat{\beta}_{4}=14 \pm 21$ threshold width
!! Generally, $L(\boldsymbol{\beta})$ has no longer a unique maximum, here, because of
$\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)=-\beta_{3} \tanh \left(\frac{\Delta T_{n}}{-\beta_{4}}\right)$

The reverse: Increased sensitivity at reference point

Person class	Time Alternative 1 $[\mathrm{min}]$	Time Alternative 2 [min]	Choice Alt. 1	Choice Alt. 2
1	25	30	16	7
2	30	30	10	10
3	35	30	7	20
4	40	30	3	20
5	45	30	3	25
6	50	30	2	30
7	55	30	1	17
8	60	30	2	50

Such increased sensitivity at the reference (here: equal trip times) is proposed by the Prospect Theory of Kahneman/Twersky in certain situations

Modelling the increased sensitivity

$$
\begin{gathered}
V_{n 1}-V_{n 2}=\beta_{1}+\beta_{2}\left[\Delta T_{n}+\beta_{3} \tanh \left(\frac{\Delta T_{n}}{\beta_{4}}\right)\right] \\
\hat{\beta}_{1}=-0.08 \pm 0.25 \\
\hat{\beta}_{2}=-0.05 \pm 0.10 \\
\hat{\beta}_{3}=27 \pm 101 \\
\hat{\beta}_{4}=10 \pm 16
\end{gathered}
$$

Four further models applied to the threshold data

11.2 GEV and Nested Logit Models

Motivation

When taking decisions, the available options are often coupled in a way that i.i.d. random utilities are not applicable:

- Destination and mode choice
> Destination city and job offers when about to moving
\rightarrow Expansion of a company: Creating a new branch office and if so, where?

11.2 GEV and Nested Logit Models

Motivation

When taking decisions, the available options are often coupled in a way that i.i.d. random utilities are not applicable:

- Destination and mode choice
- Destination city and job offers when about to moving
- Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed random utilities in the associated alternative sets, so the total random utility is correlated Red-Bus-Blue-Bus problem.

11.2 GEV and Nested Logit Models

Motivation

When taking decisions, the available options are often coupled in a way that i.i.d. random utilities are not applicable:

- Destination and mode choice
- Destination city and job offers when about to moving
- Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed random utilities in the associated alternative sets, so the total random utility is correlated
\Rightarrow Red-Bus-Blue-Bus problem.

How to model this while retaining explicit expressions for the choice probabilities?

11.2 GEV and Nested Logit Models

Motivation

When taking decisions, the available options are often coupled in a way that i.i.d. random utilities are not applicable:

- Destination and mode choice
- Destination city and job offers when about to moving
- Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed random utilities in the associated alternative sets, so the total random utility is correlated
\Rightarrow Red-Bus-Blue-Bus problem.
\Rightarrow How to model this while retaining explicit expressions for the choice probabilities?

11.2 GEV and Nested Logit Models

Motivation

When taking decisions, the available options are often coupled in a way that i.i.d. random utilities are not applicable:

- Destination and mode choice
- Destination city and job offers when about to moving
- Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed random utilities in the associated alternative sets, so the total random utility is correlated
\Rightarrow Red-Bus-Blue-Bus problem.
\Rightarrow How to model this while retaining explicit expressions for the choice probabilities?

MNL: The Red-Bus-Blue-Bus Problem

Times and costs equal, AC zero

MNL: The Red-Bus-Blue-Bus Problem

Times and costs equal, AC zero

MNL: The Red-Bus-Blue-Bus Problem

MNL: The Red-Bus-Blue-Bus Problem

100\% correlated random utilities: Problem solved!

Nontrivial nested decision: partial correlations

Nontrivial nested decision: partial correlations

Average PT utiliy higher than that of bus or tram alone because some prefer tram, some bus

The general GEV generating function

All the GEV models are defined via a Generating function $G(y)=G\left(y_{1}, \ldots, y_{I}\right)$ satisfying following formal conditions:

- Not negative: $\quad G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y},
\qquad

The general GEV generating function

All the GEV models are defined via a Generating function $G(y)=G\left(y_{1}, \ldots, y_{I}\right)$ satisfying following formal conditions:

- Not negative: $\quad G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y},
- Asymptotics: $\quad G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$,

The general GEV generating function

All the GEV models are defined via a Generating function $G(y)=G\left(y_{1}, \ldots, y_{I}\right)$ satisfying following formal conditions:

- Not negative: $\quad G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y},
- Asymptotics: $\quad G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$,

$$
G_{i} \equiv \frac{\partial G}{\partial y_{i}} \geq 0
$$

- Sign of derivatives:

$$
\begin{aligned}
G_{i j} & \equiv \frac{\partial^{2} G}{\partial y_{i} \partial y_{j}} \leq 0 \text { if } i \neq j, \\
G_{i j k} & \geq 0 \text { and so on, }
\end{aligned}
$$

- Homogeneity of degree 1: $G(\alpha \boldsymbol{y})=\alpha G(\boldsymbol{y})$

The general GEV generating function

All the GEV models are defined via a Generating function $G(y)=G\left(y_{1}, \ldots, y_{I}\right)$ satisfying following formal conditions:

- Not negative: $\quad G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y},
- Asymptotics: $\quad G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$,

$$
G_{i} \equiv \frac{\partial G}{\partial y_{i}} \geq 0
$$

- Sign of derivatives:

$$
\begin{aligned}
G_{i j} & \equiv \frac{\partial^{2} G}{\partial y_{i} \partial y_{j}} \leq 0 \text { if } i \neq j, \\
G_{i j k} & \geq 0 \text { and so on, }
\end{aligned}
$$

- Homogeneity of degree 1: $G(\alpha \boldsymbol{y})=\alpha G(\boldsymbol{y})$

The Nobel-Price winning result of McFadden et. al.

Any GEV function $G(\boldsymbol{y})$ satisfying the above four conditions

- generates a random vector $\boldsymbol{\epsilon}$ satisfying a generalized extreme-value distribution with the distribution function

$$
F(\boldsymbol{e})=P\left(\epsilon_{1} \leq e_{1}, \ldots, \epsilon_{I} \leq e_{I}\right)=e^{-G(\boldsymbol{y})} \text { with } y_{i}=e^{-e_{i}}
$$

- has analytic choice probabilities when maximizing the total utilities

Check why the above conditions for $G(\boldsymbol{y})$ must be true

The Nobel-Price winning result of McFadden et. al.

Any GEV function $G(\boldsymbol{y})$ satisfying the above four conditions

- generates a random vector $\boldsymbol{\epsilon}$ satisfying a generalized extreme-value distribution with the distribution function

$$
F(\boldsymbol{e})=P\left(\epsilon_{1} \leq e_{1}, \ldots, \epsilon_{I} \leq e_{I}\right)=e^{-G(\boldsymbol{y})} \text { with } y_{i}=e^{-e_{i}}
$$

- has analytic choice probabilities when maximizing the total utilities $U_{i}=V_{i}+\epsilon_{i}$:

$$
P_{i}=\frac{y_{i} G_{i}(\boldsymbol{y})}{G(\boldsymbol{y})} \text { with } G_{i}=\frac{\partial G}{\partial y_{i}}, y_{i}=e^{+V_{i}}
$$

? Check why the above conditions for $G(\boldsymbol{y})$ must be true

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
Because a distribution function satisfied automatically)

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?

Since the corresponding random variable ϵ_{i} is always
hence $G \rightarrow \infty$

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?
! If $y_{i} \rightarrow \infty$ then the argument $e_{i}=-\ln y_{i}$ of the distribution function tends to $-\infty$. Since the corresponding random variable ϵ_{i} is always $>-\infty$, we have $F=e^{-G}=0$, hence $G \rightarrow \infty$

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?
! If $y_{i} \rightarrow \infty$ then the argument $e_{i}=-\ln y_{i}$ of the distribution function tends to $-\infty$. Since the corresponding random variable ϵ_{i} is always $>-\infty$, we have $F=e^{-G}=0$, hence $G \rightarrow \infty$
? Sign of derivatives of G ?
$y_{i}=e^{-e_{i}}$ and G because of the first requirement all ≥ 0. Hence $G_{i} \geq 0$. The other conditions follow from the non-negativity of the distribution functions

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?
! If $y_{i} \rightarrow \infty$ then the argument $e_{i}=-\ln y_{i}$ of the distribution function tends to $-\infty$. Since the corresponding random variable ϵ_{i} is always $>-\infty$, we have $F=e^{-G}=0$, hence $G \rightarrow \infty$
? Sign of derivatives of G ?
! We check only the first derivative $G_{i}=\frac{\partial G}{\partial y_{i}}$. We have $P_{i}=y_{i} G_{i} / G$ with P_{i}, $y_{i}=e^{-e_{i}}$ and G because of the first requirement all ≥ 0. Hence $G_{i} \geq 0$. The other conditions follow from the non-negativity of the distribution functions

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?
! If $y_{i} \rightarrow \infty$ then the argument $e_{i}=-\ln y_{i}$ of the distribution function tends to $-\infty$. Since the corresponding random variable ϵ_{i} is always $>-\infty$, we have $F=e^{-G}=0$, hence $G \rightarrow \infty$
? Sign of derivatives of G ?
! We check only the first derivative $G_{i}=\frac{\partial G}{\partial y_{i}}$. We have $P_{i}=y_{i} G_{i} / G$ with P_{i}, $y_{i}=e^{-e_{i}}$ and G because of the first requirement all ≥ 0. Hence $G_{i} \geq 0$. The other conditions follow from the non-negativity of the distribution functions
? Homogeneity $G(\alpha \boldsymbol{y})=\alpha G(\boldsymbol{y})$ for any $\alpha>0$?
Because of $P_{i}=y_{i} G_{i} / G$ and the scaling invariance $P\left(\epsilon_{1}<e_{1}\right)=P\left(\lambda \epsilon_{1}<\lambda e_{1}\right)$ with $\alpha=e^{\lambda}$

Question: Check the conditions for $G(\boldsymbol{y})$

? Why $G(\boldsymbol{y}) \geq 0$ for all \boldsymbol{y} ?
! Because a distribution function $F=e^{-G}$ must be ≤ 1 (the condition $F \geq 0$ is satisfied automatically)
? Why $G \rightarrow \infty$ if any $y_{i} \rightarrow \infty$?
! If $y_{i} \rightarrow \infty$ then the argument $e_{i}=-\ln y_{i}$ of the distribution function tends to $-\infty$. Since the corresponding random variable ϵ_{i} is always $>-\infty$, we have $F=e^{-G}=0$, hence $G \rightarrow \infty$
? Sign of derivatives of G ?
! We check only the first derivative $G_{i}=\frac{\partial G}{\partial y_{i}}$. We have $P_{i}=y_{i} G_{i} / G$ with P_{i}, $y_{i}=e^{-e_{i}}$ and G because of the first requirement all ≥ 0. Hence $G_{i} \geq 0$. The other conditions follow from the non-negativity of the distribution functions
? Homogeneity $G(\alpha \boldsymbol{y})=\alpha G(\boldsymbol{y})$ for any $\alpha>0$?
! Because of $P_{i}=y_{i} G_{i} / G$ and the scaling invariance $P\left(\epsilon_{1}<e_{1}\right)=P\left(\lambda \epsilon_{1}<\lambda e_{1}\right)$ with $\alpha=e^{\lambda}$

Special Case I: Multinomial-Logit

- Generating function:

$$
G(\boldsymbol{y})^{\mathrm{MNL}}=\sum_{j=1}^{I} y_{j}
$$

- Distribution function of the random utilities (RUs):

[^0]
Special Case I: Multinomial-Logit

- Generating function:

$$
G(\boldsymbol{y})^{\mathrm{MNL}}=\sum_{j=1}^{I} y_{j}
$$

- Distribution function of the random utilities (RUs):

$$
\begin{aligned}
F(\boldsymbol{e}) & =\exp \left[-G\left(e^{-e_{1}}, \ldots\right)\right]=\exp \left(-\sum_{j} e^{-e_{j}}\right) \\
& =\prod_{j} \exp \left(-e^{-e_{j}}\right) \Rightarrow \epsilon_{i} \sim \text { i.i.d. Gumbel }
\end{aligned}
$$

Special Case I: Multinomial-Logit

- Generating function:

$$
G(\boldsymbol{y})^{\mathrm{MNL}}=\sum_{j=1}^{I} y_{j}
$$

- Distribution function of the random utilities (RUs):

$$
\begin{aligned}
F(\boldsymbol{e}) & =\exp \left[-G\left(e^{-e_{1}}, \ldots\right)\right]=\exp \left(-\sum_{j} e^{-e_{j}}\right) \\
& =\prod_{j} \exp \left(-e^{-e_{j}}\right) \Rightarrow \epsilon_{i} \sim \text { i.i.d. Gumbel }
\end{aligned}
$$

- Choice probabilities:

$$
\begin{aligned}
G_{i} & =\frac{\partial G}{\partial y_{i}}=1 \\
P_{i} & =\frac{y_{i}}{\sum_{j=1}^{I} y_{j}}=\frac{\exp \left(V_{i}\right)}{\sum_{j=1}^{I} \exp \left(V_{j}\right)}
\end{aligned}
$$

Special Case II: Two-level Nested Logit model

- Hierarchical decision: $i=(l, m), l$: top-level alternatives, m second-level alternatives depending on l
- Generating GEV function:
where $\lambda_{l} \in[0,1]$ determine the correlations of the RUs in "nest" l :
$\rightarrow \lambda_{\mathrm{y}} \rightarrow$ 1. Limit of MNI zero correlation
$\Rightarrow \lambda_{l} \rightarrow 0:$ no RUs inside the nests, correlation $=1$: sequential model: blue and red buses

Distribution of the RUs:

Special Case II: Two-level Nested Logit model

- Hierarchical decision: $i=(l, m), l$: top-level alternatives, m second-level alternatives depending on l
- Generating GEV function:

$$
G^{\mathrm{NL}}(\boldsymbol{y})=\sum_{l=1}^{L}\left(\sum_{m=1}^{M_{l}} y_{l m}^{1 / \lambda_{l}}\right)^{\lambda_{l}}
$$

where $\lambda_{l} \in[0,1]$ determine the correlations of the RUs in "nest" l :

- $\lambda_{l} \rightarrow 1$: Limit of MNL, zero correlation \Rightarrow check it!
- $\lambda_{l} \rightarrow 0$: no RUs inside the nests, correlation=1: sequential model: blue and red buses
- Distribution of the RUs:

Special Case II: Two-level Nested Logit model

- Hierarchical decision: $i=(l, m), l$: top-level alternatives, m second-level alternatives depending on l
- Generating GEV function:

$$
G^{\mathrm{NL}}(\boldsymbol{y})=\sum_{l=1}^{L}\left(\sum_{m=1}^{M_{l}} y_{l m}^{1 / \lambda_{l}}\right)^{\lambda_{l}}
$$

where $\lambda_{l} \in[0,1]$ determine the correlations of the RUs in "nest" l :

- $\lambda_{l} \rightarrow 1$: Limit of MNL, zero correlation \Rightarrow check it!
- $\lambda_{l} \rightarrow 0$: no RUs inside the nests, correlation=1: sequential model: blue and red buses
- Distribution of the RUs:

$\prod F_{l}\left(\boldsymbol{e}_{l}\right) \Rightarrow$ independent at top level

Special Case II: Two-level Nested Logit model

- Hierarchical decision: $i=(l, m), l$: top-level alternatives, m second-level alternatives depending on l
- Generating GEV function:

$$
G^{\mathrm{NL}}(\boldsymbol{y})=\sum_{l=1}^{L}\left(\sum_{m=1}^{M_{l}} y_{l m}^{1 / \lambda_{l}}\right)^{\lambda_{l}}
$$

where $\lambda_{l} \in[0,1]$ determine the correlations of the RUs in "nest" l :

- $\lambda_{l} \rightarrow 1$: Limit of MNL, zero correlation \Rightarrow check it!
- $\lambda_{l} \rightarrow 0$: no RUs inside the nests, correlation=1: sequential model: blue and red buses
- Distribution of the RUs:

$$
\begin{aligned}
F(\boldsymbol{e}) & =\exp \left[-\sum_{l}\left(\sum_{m} e^{-e_{l m} / \lambda_{l}}\right)^{\lambda_{l}}\right]=\prod_{l} \exp \left[-\left(\sum_{m} e^{-e_{l m} / \lambda_{l}}\right)^{\lambda_{l}}\right] \\
& =\prod_{l} F_{l}\left(\boldsymbol{e}_{l}\right) \Rightarrow \text { independent at top level }
\end{aligned}
$$

Nested Logit choice probabilities

Insert $G^{\mathrm{NL}}(\boldsymbol{y})$ into the general expression $P_{i}=y_{i} G_{i} / G$:

$$
P_{i}=P_{l m}=P_{l} P_{m \mid l}=\frac{e^{V_{l m} / \lambda_{l}}\left(\sum_{m^{\prime}} e^{V_{l m^{\prime}} / \lambda_{l}}\right)^{\lambda_{l}-1}}{\sum_{l^{\prime}}\left(\sum_{m^{\prime}} e^{V_{l^{\prime} m^{\prime}} / \lambda_{l^{\prime}}}\right)^{\lambda_{l^{\prime}}}}
$$

\Rightarrow complicated and non-intuitive!

Nested Logit choice probabilities

Insert $G^{\mathrm{NL}}(\boldsymbol{y})$ into the general expression $P_{i}=y_{i} G_{i} / G$:

$$
P_{i}=P_{l m}=P_{l} P_{m \mid l}=\frac{e^{V_{l m} / \lambda_{l}}\left(\sum_{m^{\prime}} e^{V_{l m^{\prime}} / \lambda_{l}}\right)^{\lambda_{l}-1}}{\sum_{l^{\prime}}\left(\sum_{m^{\prime}} e^{V_{l^{\prime} m^{\prime}} / \lambda_{l^{\prime}}}\right)^{\lambda_{l^{\prime}}}}
$$

\Rightarrow complicated and non-intuitive!

A more intuitive form of the NL choice probabilities

- Set/assume

$$
V_{l m}=W_{l}+\tilde{V}_{l m}
$$

- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{l}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values
(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)

Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{l}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
h_{1=1}\left(\sum_{m}^{\operatorname{con} n}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$.

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$. Because for these assumptions P_{l} has the normal MNL form
Show that $\lambda_{l} I_{l}$ is at least as high as the utility $V_{l m_{l}^{*}}$ of the best alternative within the nest and that
\qquad

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$. Because for these assumptions P_{l} has the normal MNL form
? Show that $\lambda_{l} I_{l}$ is at least as high as the utility $\tilde{V}_{l m_{l}^{*}}$ of the best alternative within the nest and that $\lambda_{l} I_{l}=\tilde{V}_{l m_{l}^{*}}$ for $\lambda_{l} \rightarrow 0$.
including the maximum. For $\lambda_{l} \rightarrow 0$, only the maximum contributes to the sum
Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal
MNL

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$. Because for these assumptions P_{l} has the normal MNL form
? Show that $\lambda_{l} I_{l}$ is at least as high as the utility $\tilde{V}_{l m_{l}^{*}}$ of the best alternative within the nest and that $\lambda_{l} I_{l}=\tilde{V}_{l m_{l}^{*}}$ for $\lambda_{l} \rightarrow 0$. All contributions of the sum inside the \log are exponentials and thus positive. Furthermore, the ln function is strictly monotonously increasing. Hence, $\lambda_{l} I_{l}$ is larger than any single $\tilde{V}_{l m}$ including the maximum. For $\lambda_{l} \rightarrow 0$, only the maximum contributes to the sum
Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal MNL

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$. Because for these assumptions P_{l} has the normal MNL form
? Show that $\lambda_{l} I_{l}$ is at least as high as the utility $\tilde{V}_{l m_{l}^{*}}$ of the best alternative within the nest and that $\lambda_{l} I_{l}=\tilde{V}_{l m_{l}^{*}}$ for $\lambda_{l} \rightarrow 0$. All contributions of the sum inside the log are exponentials and thus positive. Furthermore, the \ln function is strictly monotonously increasing. Hence, $\lambda_{l} I_{l}$ is larger than any single $\tilde{V}_{l m}$ including the maximum. For $\lambda_{l} \rightarrow 0$, only the maximum contributes to the sum
? Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal MNL

A more intuitive form of the NL choice probabilities

- Set/assume $\quad V_{l m}=W_{l}+\tilde{V}_{l m}$
- W_{l} : top-level contributions not appearing inside the nests
- $\tilde{V}_{l m}$: inner contributions of alternative m in nest l
- Then, the NL choice probabilities can be formulated as

$$
P_{l m}=P_{l} P_{m \mid l}, \quad P_{l}=\frac{e^{W_{l}+\lambda_{l} I_{l}}}{\sum_{l^{\prime}} e^{W_{l^{\prime}}+\lambda_{l^{\prime}} I_{l^{\prime}}}}, \quad P_{m \mid l}=\frac{e^{\tilde{V}_{l m} / \lambda_{l}}}{\sum_{m^{\prime}} e^{\tilde{V}_{l m^{\prime}} / \lambda_{l}}}
$$

with the inclusion values

$$
I_{l}=\ln \left(\sum_{m} e^{\tilde{V}_{l m} / \lambda_{l}}\right)
$$

(calibrate first $e^{\tilde{V}_{l m} / \lambda_{l}}$, then determine λ_{l} with fixed I_{l} in the outer MNL calibration)
? Argue that the outer nest decision is a normal MNL with the effective nest utilities given by $\lambda_{l} I_{l}$. Because for these assumptions P_{l} has the normal MNL form
? Show that $\lambda_{l} I_{l}$ is at least as high as the utility $\tilde{V}_{l m_{l}^{*}}$ of the best alternative within the nest and that $\lambda_{l} I_{l}=\tilde{V}_{l m_{l}^{*}}$ for $\lambda_{l} \rightarrow 0$. All contributions of the sum inside the \log are exponentials and thus positive. Furthermore, the ln function is strictly monotonously increasing. Hence, $\lambda_{l} I_{l}$ is larger than any single $\tilde{V}_{l m}$ including the maximum. For $\lambda_{l} \rightarrow 0$, only the maximum contributes to the sum
? Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal MNL Independent because $P_{l m}=P_{l} P_{m \mid l}$, MNL for the utilities $\tilde{V}_{l m} / \lambda_{l}$ for fixed l

11.2.3 Example: Combined Destination and Mode Choice

Combined destination and mode choice: the data

Per- son group	T $[\mathrm{min}]$ Emma, PT	T [min]							
Emma, car	$\mathrm{T}[\mathrm{min}]$ superm, PT	$\mathrm{T}[\mathrm{min}]$ superm, car	Fridge fill level F	y_{11}	y_{12}	y_{21}	y_{22}		
1	25	15	25	20	0.9	1	2	0	0
2	25	30	40	30	0.8	3	0	0	1
3	20	20	30	30	0.7	2	1	1	1
4	25	10	25	10	0.6	0	3	0	2
5	15	5	30	20	0.5	1	2	0	2
6	15	15	25	20	0.4	1	1	0	1
7	15	20	45	45	0.3	3	1	0	1
8	15	15	15	15	0.2	1	0	2	3
9	25	15	40	30	0.1	1	1	0	1
10	25	10	25	20	0.0	0	1	1	3

Conditional modal splits

Observed and modelled modal split when driving to "Aunt Emma"

Conditional modal splits

Observed and modelled modal split when driving to "Aunt Emma"

$$
\begin{aligned}
P_{m \mid n 1} & =\frac{\exp \left(\tilde{V}_{n 1 m} / \lambda_{1}\right)}{\sum_{m^{\prime}} \exp \left(\tilde{V}_{n 1 m^{\prime}} / \lambda_{1}\right)}, \\
\tilde{V}_{n 1 m} / \lambda_{1} & =\beta_{1} T_{n 1 m}+\beta_{2} \delta_{m 1}, \\
\hat{\beta}_{1} & =-0.18, \hat{\beta}_{2}=+0.88
\end{aligned}
$$

Conditional modal splits

Observed and modelled modal split when driving to "Aunt Emma"

$$
\begin{aligned}
P_{m \mid n 1} & =\frac{\exp \left(\tilde{V}_{n 1 m} / \lambda_{1}\right)}{\sum_{m^{\prime}} \exp \left(\tilde{V}_{n 1 m^{\prime}} / \lambda_{1}\right)}, \\
\tilde{V}_{n 1 m} / \lambda_{1} & =\beta_{1} T_{n 1 m}+\beta_{2} \delta_{m 1}, \\
\hat{\beta}_{1} & =-0.18, \hat{\beta}_{2}=+0.88
\end{aligned}
$$

Observed and modelled modal split when driving to the supermarket

Conditional modal splits

Observed and modelled modal split when driving to "Aunt Emma"

$$
\begin{aligned}
P_{m \mid n 1} & =\frac{\exp \left(\tilde{V}_{n 1 m} / \lambda_{1}\right)}{\sum_{m^{\prime}} \exp \left(\tilde{V}_{n 1 m^{\prime}} / \lambda_{1}\right)}, \\
\tilde{V}_{n 1 m} / \lambda_{1} & =\beta_{1} T_{n 1 m}+\beta_{2} \delta_{m 1}, \\
\hat{\beta}_{1} & =-0.18, \hat{\beta}_{2}=+0.88
\end{aligned}
$$

Observed and modelled modal split when driving to the supermarket

$$
\begin{aligned}
P_{m \mid n 2} & =\frac{\exp \left(\tilde{V}_{n 2 m} / \lambda_{2}\right)}{\sum_{m^{\prime}} \exp \left(\tilde{V}_{n 2 m^{\prime}} / \lambda_{2}\right)}, \\
\tilde{V}_{n 2 m} / \lambda_{2} & =\beta_{3} T_{n 2 m}+\beta_{4} \delta_{m 1}, \\
\hat{\beta}_{3} & =-0.29, \hat{\beta}_{4}=-0.42
\end{aligned}
$$

Top-level choice of the type of shop

Choice of the type of shop: "Aunt Emma" vs supermarket:

$$
\begin{gathered}
P_{n l}=\frac{\exp \left(W_{n l}+\lambda_{l} I_{n l}\right)}{\sum_{l^{\prime}} \exp \left(W_{n l^{\prime}}+\lambda_{l}^{\prime} I_{n l^{\prime}}\right)} \\
W_{n l}=\beta_{5} F_{n} \delta_{l 1}+\beta_{6} \delta_{l 1} \\
I_{n 1}=\ln \left[\sum_{m} \exp \left(\hat{\beta}_{1} T_{n 1 m}+\hat{\beta}_{2} \delta_{m 1}\right)\right] \\
I_{n 2}=\ln \left[\sum_{m} \exp \left(\hat{\beta}_{3} T_{n 2 m}+\hat{\beta}_{4} \delta_{m 1}\right)\right]
\end{gathered}
$$

$$
\hat{\beta}_{5}=2.9, \hat{\beta}_{6}=-2.0, \hat{\lambda}_{1}=0.17, \hat{\lambda}_{2}=0.21 .
$$

Final combined probabilities

Final combined probabilities

Combined nested choice of shop type and transport mode

$$
\begin{aligned}
P_{n i} & =P_{n l} P_{m \mid n l} \\
& =\operatorname{Prob}(\text { destination }) * \operatorname{Prob}(\text { mode destination })
\end{aligned}
$$

Counter check: normal MNL

$$
P_{n i}=\frac{\exp \left(V_{n i}\right)}{\sum_{i^{\prime}=1}^{4} \exp \left(V_{n i^{\prime}}\right)}
$$

$V_{1}=\beta_{1} T_{1}+\beta_{2}+\beta_{5} F+\beta_{6} \quad(l, m)=(1,1)$ Emma+PT
$V_{2}=\beta_{1} T_{2}+\beta_{6}+\beta_{5} F \quad(l, m)=(1,2) \mathrm{Emma}+\mathrm{car}$
$V_{3}=\beta_{3} T_{3}+\beta_{4} \quad(l, m)=(2,1)$ supermarket+PT
$V_{4}=\beta_{3} T_{4} \quad(l, m)=(2,2)$ supermarket+car
$\hat{\beta}_{1}=-0.15, \hat{\beta}_{2}=0.60, \hat{\beta}_{3}=-0.09, \hat{\beta}_{4}=-0.84, \hat{\beta}_{5}=3.49, \hat{\beta}_{6}=-1.76$

11.3 Advanced I: Mixed-Logit Models

if time allows, see German script, Sec. 4.14

[^0]: - Choice probabilities:

