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11.1 m Parameter Nonlinear Models

Application: Determining subjective thresholds/indifference regions

Time Time . )
Person Alternative 1 | Alternative 2 Choice| Choice
class . . Alt.1 | Alt. 2
[min] [min]
1 25 30 11 10
2 30 30 10 10
3 35 30 10 10
4 40 30 9 11
5 45 30 5 15
6 50 30 2 15
7 55 30 1 15
8 60 30 0 15
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Modelling the threshold
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Modelling the threshold
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Modelling the threshold
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unique maximum, here, because of

By = 0.043 £ 0.236 AC

Ba = —0.29 £ 0.38 asymptotic time sensitivity 85 tanh (Ang> _ 6, tanh (A?>

Bg = —15 £ 18 degree of nonlinearity > —f, 4 — B4

B4 = 14 £ 21 threshold width
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The reverse: Increased sensitivity at reference point

Time Time ) ]
Person Alternative 1 | Alternative 2 Choice| Choice
class . . Alt.1 | Alt. 2
[min] [min]
1 25 30 16 7
2 30 30 10 10
3 35 30 7 20
4 40 30 3 20
5 45 30 3 25
6 50 30 2 30
7 55 30 1 17
38 60 30 2 50

Such increased sensitivity at the reference (here: equal trip times) is proposed by the
Prospect Theory of Kahneman/Twersky in certain situations
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Modelling the increased sensitivity
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Four further models applied to the threshold data
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11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

» Destination and mode choice



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

» Destination and mode choice

» Destination city and job offers when about to moving



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

» Destination and mode choice
» Destination city and job offers when about to moving

» Expansion of a company: Creating a new branch office and if so, where?



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

» Destination and mode choice
» Destination city and job offers when about to moving
» Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed
random utilities in the associated alternative sets, so the total random utility is correlated

= Red-Bus-Blue-Bus problem.



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

11.2 GEV and Nested Logit Models

Motivation
When taking decisions, the available options are often coupled in a way that i.i.d. random
utilities are not applicable:

» Destination and mode choice
» Destination city and job offers when about to moving
» Expansion of a company: Creating a new branch office and if so, where?

In these cases, a decision involves taking two or more sub-decisions with nearly fixed
random utilities in the associated alternative sets, so the total random utility is correlated

= Red-Bus-Blue-Bus problem.

= How to model this while retaining explicit expressions for the choice probabilities?
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MNL: The Red-Bus-Blue-Bus Problem

WA
OI0 .

~

Times and costs equal,
AC zero
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MNL: The Red-Bus-Blue-Bus Problem
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MNL: The Red-Bus-Blue-Bus Problem
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MNL: The Red-Bus-Blue-Bus Problem
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Not plausible!
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100% correlated random utilities: Problem solved!
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Nontrivial nested decision: partial correlations
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Nontrivial nested decision: partial correlations
44%,
® /
YA

ol , EEEEEE *

50%
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PT

All three modes 09

(4
have equal times and costs, \ 28%
AC zero

Average PT utiliy higher than that of bus or tram alone
because some prefer tram, some bus
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The general GEV generating function

All the GEV models are defined via a Generating function G(y) = G(y1, ..., yr)
satisfying following formal conditions:

» Not negative: G(y) > 0 for all y,
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The general GEV generating function

All the GEV models are defined via a Generating function G(y) = G(y1, ..., yr)
satisfying following formal conditions:

» Not negative: G(y) > 0 for all y,
» Asymptotics: G — oo if any y; — o0,
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» Sign of derivatives: Gy = 0*q <0ifi k]
dy; dy;

Gijx = 0and so on,
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The general GEV generating function

All the GEV models are defined via a Generating function G(y) = G(y1, ..., yr)
satisfying following formal conditions:

» Not negative: G(y) > 0 for all y,
» Asymptotics: G — oo if any y; — o0,

0G
Gi = > 07
Oyi —
» Sign of derivatives: Gy = 0*q <0ifi k]
dy; dy;

Gijx = 0and so on,

» Homogeneity of degree 1: G(ay) = aG(y)



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

The Nobel-Price winning result of McFadden et. al.

Any GEV function G(y) satisfying the above four conditions

> generates a random vector € satisfying a generalized extreme-value distribution with
the distribution function

F(e) - P(Gl S €1y, €] S 6[) = e_G(y) with Yi = e_ei
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The Nobel-Price winning result of McFadden et. al.

Any GEV function G(y) satisfying the above four conditions

> generates a random vector € satisfying a generalized extreme-value distribution with
the distribution function

F(e) - P(Gl S €1y, €] S 6[) = e_G(y) with Yi = e_ei

P has analytic choice probabilities when maximizing the total utilities U; = V; + ¢;:

viGily) . oG AV
P,=——=> with G; = , Yp=e' "t
G(y) oy’ Y

Check why the above conditions for G(y) must be true
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I Because a distribution function F = ¢~ ¢ must be < 1 (the condition F' > 0 is
satisfied automatically)
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Question: Check the conditions for G(y)

? Why G(y) > 0 for all y?

I Because a distribution function F = ¢~ ¢ must be < 1 (the condition F' > 0 is
satisfied automatically)

? Why G — o if any y; — 00?

I If y; — oo then the argument e¢; = —Iny; of the distribution function tends to —oo.

Since the corresponding random variable ¢; is always > —oo, we have F' = e~ ¢ =0,
hence G — oo
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Why G(y) > 0 for all y?
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Why G(y) > 0 for all y?

Because a distribution function F = ¢~ ¢ must be < 1 (the condition F' > 0 is
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If y; — oo then the argument e; = — Iny; of the distribution function tends to —oo

Since the corresponding random variable ¢; is always > —oo, we have F' = e~ ¢ =0,
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Sign of derivatives of G?

We check only the first derivative G; = dG . We have P, = y;G;/G with P;,

y; = e~ and G because of the first reqmrement all > 0. Hence G; > 0. The other
conditions follow from the non-negativity of the distribution functions
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Question: Check the conditions for G(y)

Why G(y) > 0 for all y?

Because a distribution function F = ¢~ ¢ must be < 1 (the condition F' > 0 is
satisfied automatically)

Why G — oo if any y; — oo?
If y; — oo then the argument e; = — Iny; of the distribution function tends to —oo

Since the corresponding random variable ¢; is always > —oo, we have F' = e~ ¢ =0,
hence G — oo

Sign of derivatives of G?
We check only the first derivative G; = dG . We have P, = y;G;/G with P;,

y; = e~ and G because of the first reqmrement all > 0. Hence G; > 0. The other
conditions follow from the non-negativity of the distribution functions

Homogeneity G(ay) = aG(y) for any a > 07

Because of P; = y;GG;/G and the scaling invariance P(e; < e1) = P(\e; < Aejp) with
A
a=e
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Special Case |: Multinomial-Logit

» Generating function:
I

Gyt =3y

=1
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Special Case |: Multinomial-Logit

» Generating function:

MNL Zy]

» Distribution function of the random utilities (RUs):

F(e) = eXp [—G ((3*617 )] = exp ( _ Z 661>
= Hexp (_efej) = ¢ ~ i.i.d. Gumbel
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Special Case |: Multinomial-Logit

» Generating function:

MNL Zy]

» Distribution function of the random utilities (RUs):

F(e) = eXp [—G ((3*617 )] = exp ( _ Z 661>
= Hexp (_efej) = ¢ ~ i.i.d. Gumbel

» Choice probabilities:

oG
y;

yi _ _ exp(Vi)
Zjl':l Yj ZJI':1 exp(Vj)
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Special Case Il: Two-level Nested Logit model

» Hierarchical decision: i = (I,m), l: top-level alternatives, m second-level alternatives
depending on [
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Special Case Il: Two-level Nested Logit model

» Hierarchical decision: i = (I,m), l: top-level alternatives, m second-level alternatives
depending on [

» Generating GEV function:

GNL( Z ( Z yl//\z>

=1 m=1

where \; € [0, 1] determine the correlations of the RUs in “nest” [:

> )\, — 1: Limit of MNL, zero correlation
» )\; — 0: no RUs inside the nests, correlation=1: sequential model: blue and red
buses
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Special Case Il: Two-level Nested Logit model

» Hierarchical decision: i = (I,m), l: top-level alternatives, m second-level alternatives
depending on [

» Generating GEV function:
o=y (L)
=1 “m=1
where \; € [0, 1] determine the correlations of the RUs in “nest” [:

> )\, — 1: Limit of MNL, zero correlation
» )\; — 0: no RUs inside the nests, correlation=1: sequential model: blue and red
buses

» Distribution of the RUs:
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Special Case Il: Two-level Nested Logit model

» Hierarchical decision: i = (I,m), l: top-level alternatives, m second-level alternatives
depending on [

» Generating GEV function:
o=y (L)
=1 “m=1

where \; € [0, 1] determine the correlations of the RUs in “nest” [:

> )\, — 1: Limit of MNL, zero correlation
» )\; — 0: no RUs inside the nests, correlation=1: sequential model: blue and red
buses

» Distribution of the RUs:
Al

oo - (2o ) | = Tlew [ (Sem) ]

l m l m

F(e)

= HFz(ez)=> independent at top level
1
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Nested Logit choice probabilities

Insert GN(y) into the general expression P; = ;G /G-
eVim/N (S, eVlm,/Al)/\l—l

Zl/ (Em/ evl’m’//\l’ ))‘l/

Pl:f)lm:f)lpmﬂ:
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Nested Logit choice probabilities

Insert GN(y) into the general expression P; = ;G /G-
eVim/N (S, eVlm,/Al)/\l—l

Zl/ (Em’ eVl’m’//\l’ ))‘l/

Pl:f)lm:f)lpmﬂz

= complicated and non-intuitive!
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [
» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N
P, = PP rP=—"——_ P, =—
Im 1£"mll> l Zl/ er’+/\l’Il’ ) mll Zm, eVlm’/)‘l

with the inclusion values [} =In Zevlmp‘l
m
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

Pn.=PP,;, P=—=———+—, P,=——-—"—

" m| ’ Zl’ €Wl/+/\l’1l’ ’ ml Zm’ eVlm//)‘l

) = o (calibrate first eVim/M | then de-

with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the
m outer MNL calibration)
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

P, = PP P==—vomo1 hi=—c—F 7
im = Bbm, B S, Wt AT m|l S eVimi/A

) = o (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the
m outer MNL calibration)

Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\ I;.
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as

eWit iy eVim /N

P, = PP P==—vomo1 hi=—c—F 7
im = Bbm, B S, Wt AT m|l S eVimi/A

) = o (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the
m outer MNL calibration)

Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\;I;. Because for
these assumptions P, has the normal MNL form
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

P, = PP P==—vomo1 hi=—c—F 7
im = Bbm, B S, Wt AT m|l S eVimi/A

5 (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Zev”"p‘l termine \; with fixed I; in the
m outer MNL calibration)
Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\;I;. Because for
these assumptions P, has the normal MNL form
Show that A;I; is at least as high as the utility Vlml* of the best alternative within the nest and that
NI = Vlm? for A\; — 0.
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

P, = PP P==wom1 Pu=—c——=—7
Im. mj, £ Sy eVt m|l S eVim /N

) = o (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the

m outer MNL calibration)
Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\;I;. Because for
these assumptions P, has the normal MNL form
Show that A;I; is at least as high as the utility Vlml* of the best alternative within the nest and that

NI = Vlmf for A\; — 0. All contributions of the sum inside the log are exponentials and thus positive.
Furthermore, the In function is strictly monotonously increasing. Hence, A\;1; is larger than any single V},,,
including the maximum. For A\; — 0, only the maximum contributes to the sum
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

P, = PP P==wom1 Pu=—c——=—7
Im. mj, £ Sy eVt m|l S eVim /N

) = o (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the

m outer MNL calibration)
Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\;I;. Because for
these assumptions P, has the normal MNL form
Show that A;I; is at least as high as the utility Vlml* of the best alternative within the nest and that

NI = Vlmf for A\; — 0. All contributions of the sum inside the log are exponentials and thus positive.
Furthermore, the In function is strictly monotonously increasing. Hence, A\;1; is larger than any single V},,,
including the maximum. For A\; — 0, only the maximum contributes to the sum

Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal
MNL
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A more intuitive form of the NL choice probabilities

» Set/assume Vi, = Wi+ Vi,
> TV top-level contributions not appearing inside the nests
» V.. inner contributions of alternative m in nest [

» Then, the NL choice probabilities can be formulated as
eWit iy eVim /N

P, = PP P==wom1 Pu=—c——=—7
Im. mj, £ Sy eVt m|l S eVim /N

) = o (calibrate first eVim/M | then de-
with the inclusion values [} = 1In Ze tm /Al termine \; with fixed I; in the

m outer MNL calibration)
Argue that the outer nest decision is a normal MNL with the effective nest utilities given by A\;I;. Because for
these assumptions P, has the normal MNL form
Show that A;I; is at least as high as the utility Vlml* of the best alternative within the nest and that

NI = Vlmf for A\; — 0. All contributions of the sum inside the log are exponentials and thus positive.
Furthermore, the In function is strictly monotonously increasing. Hence, A\;1; is larger than any single V},,,
including the maximum. For A\; — 0, only the maximum contributes to the sum

Argue that the (potential) selection within a nest is independent from the outer decision and obeys a normal
MNL Independent because P, = P, P,,;, MNL for the utilities Vim /A1 for fixed 1
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11.2.3 Example: Combined Destination and Mode Choice

Decision

Corner store ("Tante Emry \ supermarket
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Combined destination and mode choice: the data

Per- Fr—nin] F—min] T [min] | T [min] Elrlldge

son superm, superm, Y11 | Y12 | Y21 | Y22

group Emma, Emma, PT car level

PT car F

1 25 15 25 20 0.9 1 2 0 0
2 25 30 40 30 0.8 3 0 0 1
3 20 20 30 30 0.7 2 1 1 1
4 25 10 25 10 0.6 0 3 0 2
5 15 5 30 20 0.5 1 2 0 2
6 15 15 25 20 0.4 1 1 0 1
7 15 20 45 45 0.3 3 1 0 1
8 15 15 15 15 0.2 1 0 2 3
9 25 15 40 30 0.1 1 1 0 1
10 25 10 25 20 0.0 0 1 1 3




D Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

Conditional modal splits

i Data PTEmma O
12 Model PT[Emma 1
Data carEmma =
Model car[Emma
1 p— £
E
[} 08 g 8
g 0 .
2 06 1
k] ®
[}
T 04 8
0.2 1
0 = . 1
1 2 3 4 5 6 7 8 9 10

Choice Set

Observed and modelled modal split when
driving to “Aunt Emma”
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Conditional modal splits

Data PTEmma O
1.2 Model PT|IEmma
Data carEmma =
Model car[Emma
1 p— £
E
[} 08 g
g 0 .
2 06
k] ®
[}
T 04
0.2
0 = . 1
1 2 3 4 5 6 7 8 9 10
Choice Set

Observed and modelled modal split when
driving to “Aunt Emma”

P o exp(anm/)\l)
m|nl — ~ )
| Zm/ eXp(anm’//\l)

anm/Al = ﬂlTnlm + 625m1a

B = —0.18, B = +0.88
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Conditional modal splits

Data PT[Emma 0O " Data PT|supermarket O
12 Model PT[Emma 1 12 Model PT|supermarket
Data car[Emma = Data car|supermarket =
Model car[Emma Model car|supermarket
1 f— 3 1
z 5 N
g 08 § 08 .
o 2
5 L L) §
e 06 e 06 e
k] ® k]
© [7)
T 04 1 T 04 8] .
m
0.2 N % 1 0.2 q
0 = L £1 0 Bt = 5 "\_u/"u" =) =)
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Choice Set Choice Set
Observed and modelled modal split when Observed and modelled modal split when
driving to “Aunt Emma” driving to the supermarket
exp(vnlm/)\l)
Pm\nl = - ’
Zm’ exp(Viim/ /A1)
anm/>\1 = ﬁlTnlm + 625m1a

B = —0.18, B = +0.88
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Conditional modal splits

Data PTEmma O
1.2 Model PT|IEmma
Data carEmma =
Model car[Emma
1 p— £
E
[} 08 g
g 0 .
2 06
k] ®
[}
T 04
0.2
0 = . 1
1 2 3 4 5 6 7 8 9 10
Choice Set

Observed and modelled modal split when
driving to “Aunt Emma”

P o exp(anm/)\l)
m|nl — ~ )
| Zm/ eXp(anm’//\l)

anm/Al = ﬂlTnlm + 625m1a

B = —0.18, B = +0.88

Data PTléuperm'aH(et =]
1.2 Model PT|supermarket
Data car|supermarket =
] Model car|supermarket
5 ™~
§ 08 .
3
g
2 08 e
k]
[}
T 04 =Y 1
m
0.2 ]
0B 7 5 7 7 ) 7
1 2 3 4 5 6 7 8 9 10
Choice Set

Observed and modelled modal split when
driving to the supermarket

Poms = exp(Vn%m/)\g) 7
Zm/ eXP(Van’/)Q)
Vizm/A2 = BsTnam + Babmi,
By = —0.29, By = —0.42

11.2 GEV and Nested Logit Models
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Relative frequency

1.2

08

06

04

02

11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

Top-level choice of the type of shop

gota Emma O ) Choice of the type of shop:
Data supermarket = “Aunt Emma" vs supermarket:
i Model supermarket
I P : GXP(Wnl + )\llnl>
& " Yo exp(Wapr + N o)
o ]
N B >< W = BsFnoin + Bedn
[] L] . R
I,i = In [Zexp (51Tn1m + 525m1) }
1 3 4 5 6 7 8 9 10 m
Choice Set I.o = In [Z exp (BBTan + B46m1) }

Bs =2.9, Bg=—2.0, A\; = 0.17, Xy = 0.21.
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Final combined probabilities

1.4 " Data Emma ANDPT 'm0 -
Model Emma AND PT ——
Data Emma A

1.2 Model Emma
Data all except supermarket AND PT =
Model all except sg‘permarket AND PT
1 Je
— \
08 Y

A / ) A

08 WA ¥ A
/LN N
/1 \~ IZII\

04
[ \
0.2 /"
T D
1 2 3 4 5 6 7 8 9 10
Choice Set

Relative frequency

fea]
2,
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Final combined probabilities

1.4 " Data Emma ANDPT 'm0 -
Model Emma AND PT ——
Data Emma A

12 Model Emma
Data all except supermarket AND PT =
Model all except sg‘permarket AND PT
z 1 K-
5 — T .
5 08 Combined
= o A / ] A nested choice of
g A
= 06 e (&
g LRI shop type and
T 4 i Py transport mode
! =
/ \ /] N f]\
0.2 /,‘ §
0 T D
1 2 3 4 5 6 7 8 9 10
Choice Set

P = Panm|nl
= Prob(destination)*Prob(mode|destination)



Econometrics Master's Course: Methods 11 Advanced Concepts of Discrete-Choice Theory 11.2 GEV and Nested Logit Models

Counter check: normal MNL

14 " Data EmmaANDPT O -
Model Emma AND PT ——
Data Emma A
12 Model Emma
Data all except supermarket AND PT =
- 1 b Model all except su ermad:(et AND PT
g 08 T~
I /a\
o A \ A
g 06 v Nays:
£ \
N Ve N SR R A1\ b (Vi)
" N NN T B eet
\
0 2 £1
1 2 3 4 5 6 7 8 9 10
Choice Set
Vi = BiTi+Ba+BsF+ 86 (IL,m)=(1,1) Emma+PT
Voo = BiTe+ B6+ BsF (I,m) = (1,2) Emma-car
Vs = B3T3+ 54 (I,m) = (2, 1) supermarket+PT
Vi = B3Ty (I,m) = (2,2) supermarket-+car

B =—0.15, B = 0.60, B3 = —0.09, B4 = —0.84, fB5 = 3.49, B = —1.76
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11.3 Advanced I: Mixed-Logit Models

if time allows, see German script, Sec. 4.14
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