9: Inferential Statistics I of Discrete-Choice Models: Maximum-Likelihood Estimation

- 9.1. Maximum-Likelihood Estimation
- 9.2 Estimation Errors: Variance-Covariance Matrix
- 9.2.1 Example 1: SP Survey in the Audience
- 9.2.2 Example 2: RP Survey in the Audience
R. inimanco sencitivitu ciff nedran

9.1. Maximum-Likelihood Estimation: the likelihood function

- The maximum-likelihood (ML) estimation is applicable for general stochastic models where the probabilities depend on a parameter vector $\boldsymbol{\beta}$
where $\hat{\boldsymbol{y}}_{n}=\hat{\boldsymbol{y}}\left(\boldsymbol{x}_{n}\right)$ gives the model estimate for \boldsymbol{x}_{n} For continuous endogenous variables the likelihood function is given by the multi-dimensional probability density at the data points:

9.1. Maximum-Likelihood Estimation: the likelihood function

- The maximum-likelihood (ML) estimation is applicable for general stochastic models where the probabilities depend on a parameter vector $\boldsymbol{\beta}$
- The goal is to maximize the likelihood function $L(\beta)$, i.e., the probability that the model predicts all data points $\left(\boldsymbol{y}_{n}, \boldsymbol{x}_{n}\right), n=1, \ldots, N$:

$$
L(\boldsymbol{\beta})=P\left(\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \quad \ldots, \quad \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right)
$$

where $\hat{\boldsymbol{y}}_{n}=\hat{\boldsymbol{y}}\left(\boldsymbol{x}_{n}\right)$ gives the model estimate for \boldsymbol{x}_{n}

- For continuous endogenous variables, the likelihood function is given by the multi-dimensional probability density at the data points:

9.1. Maximum-Likelihood Estimation: the likelihood function

- The maximum-likelihood (ML) estimation is applicable for general stochastic models where the probabilities depend on a parameter vector $\boldsymbol{\beta}$
- The goal is to maximize the likelihood function $L(\beta)$, i.e., the probability that the model predicts all data points $\left(\boldsymbol{y}_{n}, \boldsymbol{x}_{n}\right), n=1, \ldots, N$:

$$
L(\boldsymbol{\beta})=P\left(\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \quad \ldots, \quad \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right)
$$

where $\hat{\boldsymbol{y}}_{n}=\hat{\boldsymbol{y}}\left(\boldsymbol{x}_{n}\right)$ gives the model estimate for \boldsymbol{x}_{n}

- For continuous endogenous variables, the likelihood function is given by the multi-dimensional probability density at the data points:

$$
L(\boldsymbol{\beta})=f_{\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta}), \ldots, \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right)
$$

9.1. Maximum-Likelihood Estimation: the likelihood function

- The maximum-likelihood (ML) estimation is applicable for general stochastic models where the probabilities depend on a parameter vector $\boldsymbol{\beta}$
- The goal is to maximize the likelihood function $L(\beta)$, i.e., the probability that the model predicts all data points $\left(\boldsymbol{y}_{n}, \boldsymbol{x}_{n}\right), n=1, \ldots, N$:

$$
L(\boldsymbol{\beta})=P\left(\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \quad \ldots, \quad \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right)
$$

where $\hat{\boldsymbol{y}}_{n}=\hat{\boldsymbol{y}}\left(\boldsymbol{x}_{n}\right)$ gives the model estimate for \boldsymbol{x}_{n}

- For continuous endogenous variables, the likelihood function is given by the multi-dimensional probability density at the data points:

$$
L(\boldsymbol{\beta})=f_{\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta}), \ldots, \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right)
$$

? Verify that the density formulation is equivalent to the probability definition by requiring the model estimations to be in small intervals around the data instead of hitting the data exactly.

9.1. Maximum-Likelihood Estimation: the likelihood function

- The maximum-likelihood (ML) estimation is applicable for general stochastic models where the probabilities depend on a parameter vector $\boldsymbol{\beta}$
- The goal is to maximize the likelihood function $L(\beta)$, i.e., the probability that the model predicts all data points $\left(\boldsymbol{y}_{n}, \boldsymbol{x}_{n}\right), n=1, \ldots, N$:

$$
L(\boldsymbol{\beta})=P\left(\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \quad \ldots, \quad \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right)
$$

where $\hat{\boldsymbol{y}}_{n}=\hat{\boldsymbol{y}}\left(\boldsymbol{x}_{n}\right)$ gives the model estimate for \boldsymbol{x}_{n}

- For continuous endogenous variables, the likelihood function is given by the multi-dimensional probability density at the data points:

$$
L(\boldsymbol{\beta})=f_{\hat{\boldsymbol{y}}_{1}(\boldsymbol{\beta}), \ldots, \hat{\boldsymbol{y}}_{N}(\boldsymbol{\beta})}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right)
$$

? Verify that the density formulation is equivalent to the probability definition by requiring the model estimations to be in small intervals around the data instead of hitting the data exactly.
! The multi-dimensional probability density $f($.$) is defined such that$ $\mathrm{d} P=f_{\hat{\boldsymbol{y}}_{1}, \ldots, \hat{\boldsymbol{y}}_{N}}(\boldsymbol{y}) \mathrm{d}^{N} \boldsymbol{y}$. Keeping $\mathrm{d}^{N} \boldsymbol{y}$ small and constant, $\mathrm{d} P$ and thus P is maximized if and only if $f($.$) is maximized.$

Maximum-likelihood estimation

- The ML method maximizes the likelihood function:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} L(\boldsymbol{\beta})
$$

\Rightarrow Equivalently, and often better, one maximizes the log-likelihood:

Maximum-likelihood estimation

- The ML method maximizes the likelihood function:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} L(\boldsymbol{\beta})
$$

- Equivalently, and often better, one maximizes the log-likelihood:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}), \quad \tilde{L}(\boldsymbol{\beta})=\ln L(\boldsymbol{\beta})
$$

Maximum-likelihood estimation

- The ML method maximizes the likelihood function:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} L(\boldsymbol{\beta})
$$

- Equivalently, and often better, one maximizes the log-likelihood:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}), \quad \tilde{L}(\boldsymbol{\beta})=\ln L(\boldsymbol{\beta})
$$

? Why it does not matter whether to maximize the likelihood or the log-likelihood?
(ii) the maximum function is based on this inequality relation, the argument of the
maximum remains unchanged

Maximum-likelihood estimation

- The ML method maximizes the likelihood function:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} L(\boldsymbol{\beta})
$$

- Equivalently, and often better, one maximizes the log-likelihood:

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}), \quad \tilde{L}(\boldsymbol{\beta})=\ln L(\boldsymbol{\beta})
$$

? Why it does not matter whether to maximize the likelihood or the log-likelihood?
! Since, as a probability or probability density, $L>0$ and the log function is defined and strictly monotonously increasing in this range. Since (i) in this case

$$
x>y \Leftrightarrow f(x)>f(y)
$$

(ii) the maximum function is based on this inequality relation, the argument of the maximum remains unchanged.

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
L(\boldsymbol{\beta}) \quad \epsilon_{n} \text { independent } \prod_{n=1}^{N} f_{n}\left(y_{n}\right)
$$

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
L(\boldsymbol{\beta}) \stackrel{\epsilon_{n} \text { independent }}{=} \prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right],
$$

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
\begin{array}{ll}
L(\boldsymbol{\beta}) & \epsilon_{n} \text { independent } \\
=\prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right] \\
\tilde{L}(\boldsymbol{\beta}) \quad= & \sum_{n=1}^{N} \ln f_{n}\left(y_{n}\right)=\sum_{n=1}^{N}\left\{-\frac{1}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\left[\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right]\right\}
\end{array}
$$

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
\begin{aligned}
L(\boldsymbol{\beta}) \quad \epsilon_{n} \text { independent } & \prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right] \\
\tilde{L}(\boldsymbol{\beta}) \quad & \sum_{n=1}^{N} \ln f_{n}\left(y_{n}\right)=\sum_{n=1}^{N}\left\{-\frac{1}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\left[\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right]\right\} \\
= & -\frac{N}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
\begin{aligned}
L(\boldsymbol{\beta}) \quad \epsilon_{n} \text { independent } & \prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right] \\
\tilde{L}(\boldsymbol{\beta}) \quad & \sum_{n=1}^{N} \ln f_{n}\left(y_{n}\right)=\sum_{n=1}^{N}\left\{-\frac{1}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\left[\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right]\right\} \\
= & -\frac{N}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

Except for the irrelevant additive and multiplicative constants, this is the SSE function of the OLS method and therefore leads to the same estimator!

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
\begin{aligned}
L(\boldsymbol{\beta}) \quad \epsilon_{n} \text { independent } & \prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right] \\
\tilde{L}(\boldsymbol{\beta}) \quad & \sum_{n=1}^{N} \ln f_{n}\left(y_{n}\right)=\sum_{n=1}^{N}\left\{-\frac{1}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\left[\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right]\right\} \\
= & -\frac{N}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

Except for the irrelevant additive and multiplicative constants, this is the SSE function of the OLS method and therefore leads to the same estimator!

? Why it is possible to express $L(\boldsymbol{\beta})$ as a product?

Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the same result, at least if the statistical Gauß-Markow conditions are satisfied?

$$
\begin{aligned}
L(\boldsymbol{\beta}) \quad \epsilon_{n} \text { independent } & \prod_{n=1}^{N} f_{n}\left(y_{n}\right) \stackrel{\epsilon_{n} \sim i . d . N\left(0, \sigma^{2}\right)}{=} \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right] \\
\tilde{L}(\boldsymbol{\beta}) \quad & \sum_{n=1}^{N} \ln f_{n}\left(y_{n}\right)=\sum_{n=1}^{N}\left\{-\frac{1}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\left[\frac{\left(y_{n}-\boldsymbol{\beta} \boldsymbol{x}_{n}\right)^{2}}{2 \sigma^{2}}\right]\right\} \\
= & -\frac{N}{2}\left(\ln 2 \pi+\ln \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

Except for the irrelevant additive and multiplicative constants, this is the SSE function of the OLS method and therefore leads to the same estimator!
? Why it is possible to express $L(\boldsymbol{\beta})$ as a product?
! Since the random terms $\epsilon_{n} \sim i . i . d N\left(0, \sigma^{2}\right)$, particularly, they are independent from each other

Application 2: Discrete-choice models

- Probability to predict the chosen alternative i_{n} for a single decision n :

$$
P\left(\hat{\boldsymbol{Y}}_{n}=\boldsymbol{y}_{n}\right)=P\left(\hat{Y}_{n 1}=y_{n 1}, \ldots, \hat{Y}_{n I}=y_{n I}\right)
$$

Application 2: Discrete-choice models

- Probability to predict the chosen alternative i_{n} for a single decision n :

$$
\begin{aligned}
P\left(\hat{\boldsymbol{Y}}_{n}=\boldsymbol{y}_{n}\right) & =P\left(\hat{Y}_{n 1}=y_{n 1}, \ldots, \hat{Y}_{n I}=y_{n I}\right) \\
& =\prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}=P_{n i_{n}}(\boldsymbol{\beta})
\end{aligned}
$$

(this relies on the exclusivity/completeness of \mathcal{A}_{n} and of independent RUs)

Application 2: Discrete-choice models

- Probability to predict the chosen alternative i_{n} for a single decision n :

$$
\begin{aligned}
P\left(\hat{\boldsymbol{Y}}_{n}=\boldsymbol{y}_{n}\right) & =P\left(\hat{Y}_{n 1}=y_{n 1}, \ldots, \hat{Y}_{n I}=y_{n I}\right) \\
& =\prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}=P_{n i_{n}}(\boldsymbol{\beta})
\end{aligned}
$$

(this relies on the exclusivity/completeness of \mathcal{A}_{n} and of independent RUs)

- Probability to predict all the decisions correctly assuming independent decisions:

$$
L(\boldsymbol{\beta})=P\left(\boldsymbol{Y}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \ldots, \boldsymbol{Y}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right)
$$

Application 2: Discrete-choice models

- Probability to predict the chosen alternative i_{n} for a single decision n :

$$
\begin{aligned}
P\left(\hat{\boldsymbol{Y}}_{n}=\boldsymbol{y}_{n}\right) & =P\left(\hat{Y}_{n 1}=y_{n 1}, \ldots, \hat{Y}_{n I}=y_{n I}\right) \\
& =\prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}=P_{n i_{n}}(\boldsymbol{\beta})
\end{aligned}
$$

(this relies on the exclusivity/completeness of \mathcal{A}_{n} and of independent RUs)

- Probability to predict all the decisions correctly assuming independent decisions:

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =P\left(\boldsymbol{Y}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \ldots, \boldsymbol{Y}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right) \\
& =\prod_{n=1}^{N} \prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}
\end{aligned}
$$

Application 2: Discrete-choice models

- Probability to predict the chosen alternative i_{n} for a single decision n :

$$
\begin{aligned}
P\left(\hat{\boldsymbol{Y}}_{n}=\boldsymbol{y}_{n}\right) & =P\left(\hat{Y}_{n 1}=y_{n 1}, \ldots, \hat{Y}_{n I}=y_{n I}\right) \\
& =\prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}=P_{n i_{n}}(\boldsymbol{\beta})
\end{aligned}
$$

(this relies on the exclusivity/completeness of \mathcal{A}_{n} and of independent RUs)

- Probability to predict all the decisions correctly assuming independent decisions:

ML estimation:

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =P\left(\boldsymbol{Y}_{1}(\boldsymbol{\beta})=\boldsymbol{y}_{1}, \ldots, \boldsymbol{Y}_{N}(\boldsymbol{\beta})=\boldsymbol{y}_{N}\right) \\
& =\prod_{n=1}^{N} \prod_{i=1}^{I}\left[P_{n i}(\boldsymbol{\beta})\right]^{y_{n i}}
\end{aligned}
$$

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}), \quad \tilde{L}(\boldsymbol{\beta})=\sum_{n=1}^{N} \sum_{i=1}^{I} y_{n i} \ln P_{n i}(\boldsymbol{\beta})=\sum_{n=1}^{N} \ln P_{n i_{n}}(\boldsymbol{\beta})
$$

Question

? Show that, in deriving the main ML result $\tilde{L}=$ $\sum_{n} \sum_{i} y_{n i} \ln P_{n i}$, the random utilities need not to be uncorrelated between alternatives, only between choices

Because of the exclusivity/completeness requirement for the alternatives, exactly one alternative can be chosen per decision so it is enough to maximize the corresponding probability (which, of course, depends on possible correlations)

Question

? Show that, in deriving the main ML result $\tilde{L}=$ $\sum_{n} \sum_{i} y_{n i} \ln P_{n i}$, the random utilities need not to be uncorrelated between alternatives, only between choices
! Because of the exclusivity/completeness requirement for the alternatives, exactly one alternative can be chosen per decision so it is enough to maximize the corresponding probability (which, of course, depends on possible correlations)

Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people prefer certain alternatives over others for unknown reasons:

$$
V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i} \quad \text { or } \quad V_{n i}=\beta_{i} \text { if } i \neq I, \quad V_{n I}=0
$$

This AC-only model will be the "reference case" when estimating the model quality, e.g., by the likelihood-ratio index.

Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people prefer certain alternatives over others for unknown reasons:

$$
V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i} \quad \text { or } \quad V_{n i}=\beta_{i} \text { if } i \neq I, \quad V_{n I}=0
$$

This AC-only model will be the "reference case" when estimating the model quality, e.g., by the likelihood-ratio index.
? Show that the estimated models gives probabilities $P_{n i}=P_{i}$ that are equal to the observed choice fractions N_{i} / N. (Hint: Lagrange multiplicators to satisfy $\sum_{i} P_{i}=1$)

Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people prefer certain alternatives over others for unknown reasons:

$$
V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i} \quad \text { or } \quad V_{n i}=\beta_{i} \text { if } i \neq I, \quad V_{n I}=0
$$

This AC-only model will be the "reference case" when estimating the model quality, e.g., by the likelihood-ratio index.
? Show that the estimated models gives probabilities $P_{n i}=P_{i}$ that are equal to the observed choice fractions N_{i} / N. (Hint: Lagrange multiplicators to satisfy $\sum_{i} P_{i}=1$)
! we have $\tilde{L}(\boldsymbol{P})=\sum_{n} \ln P_{i_{n}}=\sum_{i} N_{i} \ln P_{i} ;$ maximize under the constraint $\sum_{i} P_{i}=1$:

$$
\frac{\mathrm{d}}{\mathrm{~d} P_{i}}\left(\tilde{L}(\boldsymbol{P})-\lambda\left(\sum_{i} P_{i}-1\right)\right) \stackrel{!}{=} 0 \Rightarrow \frac{N_{i}}{P_{i}}=\lambda \Rightarrow P_{i} \propto N_{i}
$$

Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people prefer certain alternatives over others for unknown reasons:

$$
V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i} \quad \text { or } \quad V_{n i}=\beta_{i} \text { if } i \neq I, \quad V_{n I}=0
$$

This AC-only model will be the "reference case" when estimating the model quality, e.g., by the likelihood-ratio index.
? Show that the estimated models gives probabilities $P_{n i}=P_{i}$ that are equal to the observed choice fractions N_{i} / N. (Hint: Lagrange multiplicators to satisfy $\sum_{i} P_{i}=1$)
! we have $\tilde{L}(\boldsymbol{P})=\sum_{n} \ln P_{i_{n}}=\sum_{i} N_{i} \ln P_{i} ;$ maximize under the constraint $\sum_{i} P_{i}=1$:

$$
\frac{\mathrm{d}}{\mathrm{~d} P_{i}}\left(\tilde{L}(\boldsymbol{P})-\lambda\left(\sum_{i} P_{i}-1\right)\right) \stackrel{!}{=} 0 \Rightarrow \frac{N_{i}}{P_{i}}=\lambda \Rightarrow P_{i} \propto N_{i}
$$

? Based on this result $P_{i}=N_{i} / N$, give the parameters for the AC-only MNL and for the binary i.i.d. Probit model

Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people prefer certain alternatives over others for unknown reasons:

$$
V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i} \quad \text { or } \quad V_{n i}=\beta_{i} \text { if } i \neq I, \quad V_{n I}=0
$$

This AC-only model will be the "reference case" when estimating the model quality, e.g., by the likelihood-ratio index.
? Show that the estimated models gives probabilities $P_{n i}=P_{i}$ that are equal to the observed choice fractions N_{i} / N. (Hint: Lagrange multiplicators to satisfy $\sum_{i} P_{i}=1$)
! we have $\tilde{L}(\boldsymbol{P})=\sum_{n} \ln P_{i_{n}}=\sum_{i} N_{i} \ln P_{i} ;$ maximize under the constraint $\sum_{i} P_{i}=1$:

$$
\frac{\mathrm{d}}{\mathrm{~d} P_{i}}\left(\tilde{L}(\boldsymbol{P})-\lambda\left(\sum_{i} P_{i}-1\right)\right) \stackrel{!}{=} 0 \Rightarrow \frac{N_{i}}{P_{i}}=\lambda \Rightarrow P_{i} \propto N_{i}
$$

? Based on this result $P_{i}=N_{i} / N$, give the parameters for the AC-only MNL and for the binary i.i.d. Probit model Logit: $P_{i} / P_{I}=N_{i} / N_{I}=\exp \left(\beta_{i}\right)$ (notice that I is the reference w/o AC)

Exercise: simple binomial model with an AC and travel time

$$
V_{n i}=\beta_{1} \delta_{i 1}+\beta_{2} T_{n i}
$$

Choice set	$T_{\text {ped }}=T_{1}[\mathrm{~min}]$	$T_{\text {bike }}=T_{2}[\mathrm{~min}]$	\# chosen 1	\# chosen 2
1	15	30	3	2
2	10	15	2	3
3	20	20	1	4
4	30	25	1	4
5	30	20	0	5
6	60	30	0	5

Exercise: simple binomial model with an AC and travel time

$$
V_{n i}=\beta_{1} \delta_{i 1}+\beta_{2} T_{n i}
$$

I: Graphical solution

I: Graphical solution

Logit:
$\tilde{L}=-12$
$\hat{\beta}_{1}=-1.3, \hat{\beta}_{2}=-0.14$,
AC in minutes: $-\frac{\hat{\beta}_{1}}{\hat{\beta_{2}}}=-9 \mathrm{~min}$

I: Graphical solution

Logit:
$\tilde{L}=-12$
$\hat{\beta}_{1}=-1.3, \hat{\beta}_{2}=-0.14$,
AC in minutes: $-\frac{\hat{\beta}_{1}}{\hat{\beta}_{2}}=-9 \mathrm{~min}$

I: Graphical solution

Logit:

$\tilde{L}=-12$
$\hat{\beta}_{1}=-1.3, \hat{\beta}_{2}=-0.14$,
AC in minutes: $-\frac{\hat{\beta}_{1}}{\hat{\beta_{2}}}=-9 \mathrm{~min}$

Probit:

$\tilde{L}=-12$
$\hat{\beta}_{1}=-1.1, \hat{\beta}_{2}=-0.12$,
AC in minutes: $-\frac{\hat{\beta}_{1}}{\hat{\beta}_{2}}=-9 \mathrm{~min}$

II. Numerical solution

- Generally, we have a nonlinear optimization problem.
- For parameter-linear utilities, we know for the MNL that a maximum exists and is unique.
- Standard methods of nonlinear optimization are possible:
\rightarrow Newton's and quasi-Newton method: Fast but may be unstable
- Gradient/steepest descent methods: slow but reliable
$>$ Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquardt algorithm combining gradient and Newton methods. Such methods are used in many software packages
$>$ genetic algorithms if the objective function landscape is complicated (nonlinear utilities)

II. Numerical solution

- Generally, we have a nonlinear optimization problem.
- For parameter-linear utilities, we know for the MNL that a maximum exists and is unique.
- Standard methods of nonlinear optimization are possible:
- Newton's and quasi-Newton method: Fast but may be unstable
- Gradient/steepest descent methods: slow but reliable
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquardt algorithm combining gradient and Newton methods. Such methods are used in many software packages
- genetic algorithms if the objective function landscape is complicated (nonlinear utilities).

Special case: estimating the MNL

The special structure of the MNL with parameter-linear utilities, $V_{n i}=\sum_{m} \beta_{m} X_{m n i}$ allows for an intuitive formulation of the estimation problem:

The observed and modeled property sums sums of the factors X for a given parameter m should be the same

$$
\begin{aligned}
X_{m}^{\mathrm{MNL}} & =X_{m}^{\mathrm{data}} \\
\sum_{n, i} x_{m n i} P_{n i}(\hat{\boldsymbol{\beta}}) & =\sum_{n, i} x_{m n i} y_{n i}=\sum_{n} x_{m n i_{n}}
\end{aligned}
$$

Example: four factors, two alternatives

MNL model, $V_{n i}=\beta_{1} T_{n i}+\beta_{2} C_{n i}+\beta_{3} g_{i} \delta_{i 1}+\beta_{4} \delta_{i 1}, g_{\text {〇 }}=0, g_{\text {Q }}=1$:

- $X_{1}=T$: Total travel time for the chosen alternatives:

$$
T^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) T_{n i}, \quad T^{\mathrm{data}}=\sum_{n, i} y_{n i} T_{n i}=\sum_{n} T_{n i_{n}}
$$

Total money spent by the decision makers:

9

number of woman choosing alternative 1

Example: four factors, two alternatives

MNL model, $V_{n i}=\beta_{1} T_{n i}+\beta_{2} C_{n i}+\beta_{3} g_{i} \delta_{i 1}+\beta_{4} \delta_{i 1}, g_{\circlearrowleft}=0, g_{\text {Q }}=1$:

- $X_{1}=T$: Total travel time for the chosen alternatives:

$$
T^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) T_{n i}, \quad T^{\mathrm{data}}=\sum_{n, i} y_{n i} T_{n i}=\sum_{n} T_{n i_{n}}
$$

- $X_{2}=C$: Total money spent by the decision makers:

$$
C^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) C_{n i}, \quad C^{\mathrm{data}}=\sum_{n, i} y_{n i} C_{n i}=\sum_{n} C_{n i_{n}}
$$

$X_{4}=N_{1}:$ total number of persons choosing alternative 1:

Example: four factors, two alternatives

MNL model, $V_{n i}=\beta_{1} T_{n i}+\beta_{2} C_{n i}+\beta_{3} g_{i} \delta_{i 1}+\beta_{4} \delta_{i 1}, g_{\circlearrowleft}=0, g_{\text {Q }}=1$:

- $X_{1}=T$: Total travel time for the chosen alternatives:

$$
T^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) T_{n i}, \quad T^{\mathrm{data}}=\sum_{n, i} y_{n i} T_{n i}=\sum_{n} T_{n i_{n}}
$$

- $X_{2}=C$: Total money spent by the decision makers:

$$
C^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) C_{n i}, \quad C^{\mathrm{data}}=\sum_{n, i} y_{n i} C_{n i}=\sum_{n} C_{n i_{n}}
$$

- $X_{3}=N_{1,9}$: number of woman choosing alternative 1:

$$
N_{1, \uparrow}^{\mathrm{MNL}}=\sum_{n} P_{n 1}(\boldsymbol{\beta}) g_{n}, \quad N_{1, \uparrow}^{\text {data }}=\sum_{n} y_{n 1} g_{n}
$$

$\Rightarrow X_{4}=N_{1}$: total number of persons choosing alternative 1

Example: four factors, two alternatives

MNL model, $V_{n i}=\beta_{1} T_{n i}+\beta_{2} C_{n i}+\beta_{3} g_{i} \delta_{i 1}+\beta_{4} \delta_{i 1}, g_{\circlearrowleft}=0, g_{\text {¢ }}=1$:

- $X_{1}=T$: Total travel time for the chosen alternatives:

$$
T^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) T_{n i}, \quad T^{\mathrm{data}}=\sum_{n, i} y_{n i} T_{n i}=\sum_{n} T_{n i_{n}}
$$

- $X_{2}=C$: Total money spent by the decision makers:

$$
C^{\mathrm{MNL}}=\sum_{n, i} P_{n i}(\boldsymbol{\beta}) C_{n i}, \quad C^{\mathrm{data}}=\sum_{n, i} y_{n i} C_{n i}=\sum_{n} C_{n i_{n}}
$$

- $X_{3}=N_{1,9}$: number of woman choosing alternative 1:

$$
N_{1, \uparrow}^{\mathrm{MNL}}=\sum_{n} P_{n 1}(\boldsymbol{\beta}) g_{n}, \quad N_{1, \uparrow}^{\mathrm{data}}=\sum_{n} y_{n 1} g_{n}
$$

- $X_{4}=N_{1}$: total number of persons choosing alternative 1:

$$
N_{1}^{\mathrm{MNL}}=\sum_{n} P_{n 1}(\boldsymbol{\beta}), \quad N_{1}^{\mathrm{data}}=\sum_{n} y_{n 1}
$$

9.2 Estimation Errors: Variance-Covariance Matrix

Since the log-likelihood is maximized at $\hat{\boldsymbol{\beta}}$, we have

$$
\frac{\partial \tilde{L}}{\partial \boldsymbol{\beta}}=0 \Rightarrow \tilde{L}(\boldsymbol{\beta}) \approx \tilde{L}_{\max }+\frac{1}{2} \Delta \boldsymbol{\beta}^{T} \cdot \mathbf{H} \cdot \Delta \boldsymbol{\beta}, \quad \Delta \boldsymbol{\beta}=\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}
$$

with the (negative definite) Hessian $H_{l m}=\left.\frac{\partial^{2} \tilde{L}(\boldsymbol{\beta})}{\partial \beta_{l} \partial \beta_{m}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}$
Compare $L(\beta)$ near its maximum with the density $f(x)$ of the general multivariate normal distribution with variance-covariance matrix Σ
\qquad asymptotic limit (higher than quadratic terms in $L(\boldsymbol{\beta})$ negligible)

9.2 Estimation Errors: Variance-Covariance Matrix

Since the log-likelihood is maximized at $\hat{\boldsymbol{\beta}}$, we have

$$
\frac{\partial \tilde{L}}{\partial \boldsymbol{\beta}}=0 \Rightarrow \tilde{L}(\boldsymbol{\beta}) \approx \tilde{L}_{\max }+\frac{1}{2} \Delta \boldsymbol{\beta}^{T} \cdot \mathbf{H} \cdot \Delta \boldsymbol{\beta}, \quad \Delta \boldsymbol{\beta}=\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}
$$

with the (negative definite) Hessian $H_{l m}=\left.\frac{\partial^{2} \tilde{L}(\boldsymbol{\beta})}{\partial \beta_{l} \partial \beta_{m}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}$
Compare $L(\boldsymbol{\beta})$ near its maximum with the density $f(\boldsymbol{x})$ of the general multivariate normal distribution with variance-covariance matrix $\boldsymbol{\Sigma}$:

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =L_{\max } \exp \left(\frac{1}{2} \Delta \boldsymbol{\beta}^{T} \cdot \mathbf{H} \cdot \Delta \boldsymbol{\beta}\right) \\
f(\boldsymbol{x}) & =\left((2 \pi)^{M} \operatorname{Det} \boldsymbol{\Sigma}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{x}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}\right)
\end{aligned}
$$

Identify $\Delta \boldsymbol{\beta}$ with \boldsymbol{x}, the sought-after variance-covariance matrix \mathbf{V} with $\boldsymbol{\Sigma}$, and assume the asymptotic limit (higher than quadratic terms in $L(\hat{\boldsymbol{\beta}})$ negligible):

9.2 Estimation Errors: Variance-Covariance Matrix

Since the log-likelihood is maximized at $\hat{\boldsymbol{\beta}}$, we have

$$
\frac{\partial \tilde{L}}{\partial \boldsymbol{\beta}}=0 \Rightarrow \tilde{L}(\boldsymbol{\beta}) \approx \tilde{L}_{\max }+\frac{1}{2} \Delta \boldsymbol{\beta}^{T} \cdot \mathbf{H} \cdot \Delta \boldsymbol{\beta}, \quad \Delta \boldsymbol{\beta}=\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}
$$

with the (negative definite) Hessian $H_{l m}=\left.\frac{\partial^{2} \tilde{L}(\boldsymbol{\beta})}{\partial \beta_{l} \partial \beta_{m}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}$
Compare $L(\boldsymbol{\beta})$ near its maximum with the density $f(\boldsymbol{x})$ of the general multivariate normal distribution with variance-covariance matrix $\boldsymbol{\Sigma}$:

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =L_{\max } \exp \left(\frac{1}{2} \Delta \boldsymbol{\beta}^{T} \cdot \mathbf{H} \cdot \Delta \boldsymbol{\beta}\right) \\
f(\boldsymbol{x}) & =\left((2 \pi)^{M} \operatorname{Det} \boldsymbol{\Sigma}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{x}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}\right)
\end{aligned}
$$

Identify $\Delta \boldsymbol{\beta}$ with \boldsymbol{x}, the sought-after variance-covariance matrix \mathbf{V} with $\boldsymbol{\Sigma}$, and assume the asymptotic limit (higher than quadratic terms in $\tilde{L}(\hat{\boldsymbol{\beta}})$ negligible): \Rightarrow

$$
\mathbf{V}=\operatorname{Cov}(\hat{\boldsymbol{\beta}})=E\left[(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\right] \approx-\mathbf{H}^{-1}(\hat{\boldsymbol{\beta}})
$$

Fisher's information matrix

The variance-covariance matrix is related to Fisher's information matrix \mathcal{I} :

$$
\mathcal{I}=\mathbf{V}^{-1}=-\mathbf{H}, \quad I_{l m}=-\frac{\partial^{2} \tilde{L}(\hat{\boldsymbol{\beta}})}{\partial \beta_{l} \partial \beta_{m}}
$$

- Roughly speaking, information is missing uncertainty, so the higher the main components of \mathcal{I}, the lower the main components of \mathbf{V}
\Rightarrow Cramér-Rao inequality: A lower bound for the variance-covariance matrix is the inverse of Fisher's information matrix \Rightarrow The ML estimator is asymptotically efficient
\qquad

Fisher's information matrix

The variance-covariance matrix is related to Fisher's information matrix \mathcal{I} :

$$
\mathcal{I}=\mathbf{V}^{-1}=-\mathbf{H}, \quad I_{l m}=-\frac{\partial^{2} \tilde{L}(\hat{\boldsymbol{\beta}})}{\partial \beta_{l} \partial \beta_{m}}
$$

- Roughly speaking, information is missing uncertainty, so the higher the main components of \mathcal{I}, the lower the main components of \mathbf{V}
- Cramér-Rao inequality: A lower bound for the variance-covariance matrix is the inverse of Fisher's information matrix \Rightarrow The ML estimator is asymptotically efficient
\rightarrow Comparison with the OLS estimator $\mathbf{V}_{\text {OLS }}=2 \sigma^{2} \mathbf{H}_{\text {SSE }}^{-1}$ of regression models: The negative Hesse matrix of $\tilde{L}(\boldsymbol{\beta})$ is proportional to the Hesse matrix of the regression SSE $S(\boldsymbol{\beta})$

Fisher's information matrix

The variance-covariance matrix is related to Fisher's information matrix \mathcal{I} :

$$
\mathcal{I}=\mathbf{V}^{-1}=-\mathbf{H}, \quad I_{l m}=-\frac{\partial^{2} \tilde{L}(\hat{\boldsymbol{\beta}})}{\partial \beta_{l} \partial \beta_{m}}
$$

- Roughly speaking, information is missing uncertainty, so the higher the main components of \mathcal{I}, the lower the main components of \mathbf{V}
- Cramér-Rao inequality: A lower bound for the variance-covariance matrix is the inverse of Fisher's information matrix \Rightarrow The ML estimator is asymptotically efficient
- Comparison with the OLS estimator \mathbf{V} OLS $=2 \sigma^{2} \mathbf{H}_{\text {SSE }}^{-1}$ of regression models:

$$
\mathcal{I}=-\mathbf{H}=\mathbf{H}_{\mathrm{SSE}} /\left(2 \sigma^{2}\right)=\mathbf{X}^{\prime} \mathbf{X} / \sigma^{2}
$$

The negative Hesse matrix of $\tilde{L}(\boldsymbol{\beta})$ is proportional to the Hesse matrix of the regression SSE $S(\boldsymbol{\beta})$.

9.2.1 Example 1 from past lecture:

SP Survey in the Audience WS18/19 (red: bad weather, $W=1$)

Choice Set	Alt. 1: Ped	Alt. 2: Bike	Alt. 3: PT/Car	Alt 1	Alt 2	Alt 3
1	30 min	20 min	$20 \mathrm{~min}+0 €$	1	3	7
2	30 min	20 min	$20 \mathrm{~min}+2 €$	2	9	2
3	30 min	20 min	$20 \mathrm{~min}+1 €$	1	5	7
4	30 min	20 min	$30 \mathrm{~min}+0 €$	2	9	3
5	50 min	20 min	$30 \mathrm{~min}+0 €$	0	9	4
6	50 min	30 min	$30 \mathrm{~min}+0 €$	0	3	9
7	50 min	40 min	$30 \mathrm{~min}+0 €$	0	2	10
8	180 min	60 min	$60 \mathrm{~min}+2 €$	0	4	11
9	180 min	40 min	$60 \mathrm{~min}+2 €$	0	9	6
10	180 min	40 min	$60 \mathrm{~min}+2 €$	0	1	14
11	12 min	8 min	$10 \mathrm{~min}+0 €$	3	5	6
12	12 min	8 min	$10 \mathrm{~min}+1 €$	5	7	2

Model specification for Model 1 of the past lecture

Likelihood and log-likelihood function for varying cost (β_{2}) and time (β_{3}) sensitivities

Log-likelihood function in parameter space

9.2.2 Example 2: RP Survey in the Audience

Distance classes for the trip home to university (cumulated till 2018)
Weather: good

Distance	Class- center	Choice Alt. 1: ped	Choice Alt. 2: bike	Choice Alt. 2: PT	Choice Alt. 3: car
$0-1 \mathrm{~km}$	0.5 km	17	16	10	0
$1-2 \mathrm{~km}$	1.5 km	9	23	20	2
$2-5 \mathrm{~km}$	3.5 km	2	27	55	4
$5-10 \mathrm{~km}$	7.5 km	0	7	42	7
$10-20 \mathrm{~km}$	12.5 km	0	0	18	7

Revealed Choice: fit quality

$$
\begin{aligned}
& V_{1}=\beta_{1}+\beta_{4} r \\
& V_{2}=\beta_{2}+\beta_{5} r \\
& V_{3}=\beta_{3}+\beta_{6} r \\
& V_{4}=0 \\
& \\
& \beta_{1}=4.1 \pm 0.6 \\
& \beta_{2}=3.6 \pm 0.5 \\
& \beta_{3}=3.0 \pm 0.5 \\
& \beta_{4}=-1.43 \pm 0.26 \\
& \beta_{5}=-0.48 \pm 0.08 \\
& \beta_{6}=-0.14 \pm 0.05
\end{aligned}
$$

Revealed Choice: Modal split as a function of distance

Likelihood and Log-Likelihood as $f\left(\beta_{1}, \beta_{2}\right)$

$$
V_{i}=\sum_{m=1}^{3} \beta_{m} \delta_{m, i}+\sum_{m=1}^{3} \beta_{m+3} r \delta_{m, i}
$$

Likelihoodfunktion
$L\left(\beta_{1}, \beta_{2}, \hat{\beta}_{3}, \ldots\right)$

Log-Likelihoodfunktion $\tilde{L}\left(\beta_{1}, \beta_{2}, \hat{\beta}_{3}, \ldots\right)$

Log-Likelihood: Sections through parameter space

