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8.1 Logit Models: Definition

All Logit models are defined by Gumbel-distributed random utilities.

I The standard Multinomial-Logit model (MNL) has RUs distributed

according to εi ∼ i.i.d Gumbel(0, 1)

I Distribution:
F

(η,λ)
Gu (x) = exp

[
−e−λ(x−η)

]
I Density:

f
(η,λ)
Gu (x) =

dF
(η,λ)
Gu (x)

dx
= λe−λ(x−η) exp

[
−e−λ(x−η)

]
.

I Statistical properties:

εmode = η, E(ε) = η + γ/λ with γ = 0.5772, V (ε) =
π2

6λ2
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Density functions of some Gumbel distributions

⇒ not symmetric; expectation ! = η, particularly E(ε) = γ = 0.5772 if ε ∼ Gu(0, 1)
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Questions

? The numerical values of the deterministic utilities Vi are π/
√

6 ≈ 1.28 times as large
as if the RU variance V (ε) were = 1. Why?
Because of the scaling invariance of discrete-choice models: The choice probability
remains unchanged if both the random and deterministic utilities are multiplied by a
factor λ > 0

? The nonzero E(εi) = 0.5772 is irrelevant. Why?
This is due to the translation invariance of discrete-choice models: When adding a
real-valued constant to the utilities of all alternatives, nothing changes. Here, a
common E(εi) = 0.5772 (remember, ε ∼ i.i.d.!) is just such a common constant.
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Gumbel distribution as a limit distribution for max(.)

The maximum of many i.i.d. random variables Xi with exponential tails ∝ exp(−λx)
approaches a Gumbel or Generalized Extreme Value Type-I distribution:

max(X1, ..., Xn)
asympt.∼ Gu(lnn, λ)

Example 1: Maximum of i.i.d. exponentially distributed RUs
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Gumbel distribution as a limit distribution for max(.)

Example 2: Maximum of i.i.d. combined uniform-exponential RUs

? Give reasons why the maximum of two independent Gumbel distributed random variables
of the same scale parameter is Gumbel distributed as well
Since max(max(x1, x2),max(x3, x4)) = max(x1, x2, x3, x4)
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Properties of the Multinomial-Logit Model (MNL)

I Models of the Logit family (MNL, nested Logit, GEV models) are the only ones
with explicit expressions for the choice probabilities for the multinomial case
I > 2. For the MNL itself, we have

PMNL
i =

exp(Vi)∑
j exp(Vj)

I Besides the translational and scale invariance of all simple discrete-choice
models, the MNL has the Independence of Irrelevant Alternatives (IIA)
property:

IIA property: The relative preference of Alternative i over j as
defined by the choice probability ratio Pi/Pj does not depend
on other alternatives k 6= i, j

I The IIA property is exclusively true for the MNL. In fact, the MNL can be
equivalently defined by the IIA property instead of i.i.d. Gumbel RUs.
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Questions

? Show that the MNL choice probabilities satisfy translational invariance.
Just devide the Logit choice probability formula by, e.g., exp(V1):

PMNL
i =

exp(Vi − V1)∑
j exp(Vj − V1)

? For a comparison with another model, we want V (εi) = 1 instead of π2/6. In which
way the model parameters must be changed?
This means, the standard deviation of ε is now given by 1 rather than by
π/
√

6 ≈ 1.28, i.e., multiplied by λ =
√

6/π. The choice probabilities (no longer given
by the Logit formula!) will be unchanged if the determinsitic utilities, i.e., the
parameters, are multiplied by λ as well

? Derive the IIA property from the choice probability formula.
The IIA says that the relative preference of an alternative i over j, i.e. Pi/Pj , does
not depend on any Vk, k 6= i, j. Just calculate this ratio:

Pi
Pj

=
exp(Vi)∑
k exp(Vk)

∑
l exp(Vl)

exp(Vj)
= exp(Vi − Vj)
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Questions (2)

? The choice probabilities of three alternatives are given by P1 = 0.2, P2 = 0.4, and
P3 = 0.4. Now, Alternative 3 is no longer available. Give the new Logit choice
probabilities.
No need to re-calculate using the Logit probability formula. Just use the IIA property:

P1

P2
= 1/2 = const. ⇒ P1 = 1/3, P2 = 2/3

? The Gumbel distribution is the limit distribution of the maximum of
exponentially-tailed random variables. Is there really a justification for this sort of
distribution if the RUs are the result of many unknown/not considered effects?
Not really. If there are many unknown/not considered effects, the chance is high that
they are not correlated and the central limit theorem can be applied (even if there
are correlations, this theorem is quite robust). Hence, there would be a justification
for Gaussian rather than Gumbel RUs. The fact that the maximum of
exponentially-tailed distributions is Gumbel distributed has no real relevance here.
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8.1.1 Example: SP Survey in the Audience WS18/19
(red: bad weather, W = 1)

Choice
Set

Alt. 1:
Ped

Alt. 2:
Bike

Alt. 3:
PT/Car

Alt 1 Alt 2 Alt 3

1 30 min 20 min 20 min+0e 1 3 7

2 30 min 20 min 20 min+2e 2 9 2

3 30 min 20 min 20 min+1e 1 5 7

4 30 min 20 min 30 min+0e 2 9 3

5 50 min 20 min 30 min+0e 0 9 4

6 50 min 30 min 30 min+0e 0 3 9

7 50 min 40 min 30 min+0e 0 2 10

8 180 min 60 min 60 min+2e 0 4 11

9 180 min 40 min 60 min+2e 0 9 6

10 180 min 40 min 60 min+2e 0 1 14

11 12 min 8 min 10 min+0e 3 5 6

12 12 min 8 min 10 min+1e 5 7 2



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Model 1: generic times and costs, no weather

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

or

V1 = β0 + β2K1 + β3T1,
V2 = β1 + β2K2 + β3T2,
V3 = β2K3 + β3T3

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Model 1: generic times and costs, no weather

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

or

V1 = β0 + β2K1 + β3T1,
V2 = β1 + β2K2 + β3T2,
V3 = β2K3 + β3T3

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Model 1: generic times and costs, no weather

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

or

V1 = β0 + β2K1 + β3T1,
V2 = β1 + β2K2 + β3T2,
V3 = β2K3 + β3T3

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Model 1: generic times and costs, no weather

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

or

V1 = β0 + β2K1 + β3T1,
V2 = β1 + β2K2 + β3T2,
V3 = β2K3 + β3T3

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Dependence of the modal split on the PT attributes

Wrong sign for cost sensitivity, too low time sensitivity!
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assuming plausible speeds 5, 15, and 25 km/h for each mode, respectively
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Model 2: generic times and costs
plus weather factor (bad weather, W = 1)

Vi = β0δi1 + β1δi2
+ β2Ki + β3T1
+ β4Wδi3

β0 = −0.65± 0.37,
β1 = −0.42± 0.25,
β2 = −0.10± 0.20,
β3 = −0.09± 0.02,
β4 = 4.2± 1.1

β0

−β3
= −7.1 min,

β1

−β3
= −4.6 min,

β0

−β2
= −6.7e,

β1

−β2
= −4.3e,

60β3

β2
= +57e/h,

β4

−β2
= +44e
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assuming plausible speeds 5, 15, and 25 km/h for each mode, respectively
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Model 3: alt-spec time sensitivities plus weather factor

Vi = β0δi1 + β1δi2
+ β2K + β3T1δi1
+ β4T2δi2 + β5T3δi3
+ β6Wδi3

β0 = +1.03± 0.74,
β1 = +0.66± 0.40,
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β4 = −0.11± 0.03,
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Comparison: Model 1

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h

AIC=275, BIC=303,
ρ2 = 0.200, ρ̃2 = 0.177



Econometrics Master’s Course: Methods Chapter 8: Logit and Probit Models 8.1 Logit Models

Model 2

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti
+ β4Wδi3

β0 = −0.65± 0.37,
β1 = −0.42± 0.25,
β2 = −0.10± 0.20,
β3 = −0.09± 0.02,
β4 = 4.2± 1.1

β0

−β3
= −7.1 min,

β1

−β3
= −4.6 min,

β0

−β2
= −6.7e,

β1

−β2
= −4.3e,

60β3

β2
= +57e/h,

β4

−β2
= +44eAIC=247, BIC=282,

ρ2 = 0.273, ρ̃2 = 0.245
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Model 3

Vi = β0δi1 + β1δi2
+ β2K + β3T1δi1
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+ β6Wδi3

β0 = +1.03± 0.74,
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AIC=227, BIC=277,
ρ2 = 0.319, ρ̃2 = 0.279
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8.2 Probit Models

The Probit Model class is defined by (generally correlated) Gaussian RUs.

I The general multinomial Probit model (MNP) has random utilities

ε ∼ N(0,Σ) with the variance-covariance matrix Σ of the RUs

I The special case of the i.i.d. MNP with Σ = 1 (unit matrix), i.e.,
εi ∼ i.i.d. N(0, 1) has similar properties as the MNL (but not the IIA
property!). However, for I ≥ 3, the MNP needs integrals (1d, if there are no
correlations) to calculate the choice probabilities.

I Often, i.i.d Gaussian RUs can be motivited by the central-limit theorem while
Gumbel distributed ones cannot. However, since the MNL behaves similarly and
has explicit choice probabilities and a simpler calibration, it is often favoured
over the i.i.d. MNP.

? Why one can set the variance-covariance matrix to be the unit matrix (i.e. setting all
variances=1) in case of the i.i.d MNP?

Because of the Scaling invariance of all Discrete-choice models with additive random

utilities. If we had εi ∼ i.i.d.N(0, 1/λ2), just multiply the deterministic and random

utilities by λ to have an equivalent Probit model with εi ∼ i.i.d.N(0, 1)
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Choice probabilities of the binary Probit model I
I Choice probabilities of the binary Probit model with εi ∼ i.i.d. N(0, 1):

P1 = Φ

(
V1 − V2√

2

)
, P2 = 1− P1

? Derive the choice probabilities for the correlated binary Probit model. Hint: a linear
combination of Gaussians is again a Gaussian
Assume without loss of generality zero expectations and use the general rules for the variance
of two random variables X1, X2 (a, b ∈ IR):

V (aX1 + bX2) = a2V (X1) + b2V (X2) + 2abCov(X1, X2)

? The Probit time and cost sensitivities are β̂T = −0.1 min−1 and β̂C = −0.6e−1. Give the
implied value of time (VOT). Give also the approximate parameter values and the VOT for
the corresponding Probit model

The VOT in e/min is just the ratio of the time and cost sensitivities,

VOT = β̂T /β̂C = 1/6e/min = 10e/h. The Logit parameters are approximately the Probit

parameters multiplied by the standard deviation λ = π/
√

6 of the Gumbel distributed Logit

RUs. The VOT is essentially unchanged.
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Choice probabilities of the binary Probit model II

Densities of the standardnormal dis-
tributed random utilities ε1 and ε2 and
of the utility difference ε1 − ε2

Distribution functions of the random util-
ities and the utility difference as a func-
tion of the deterministic utility difference
V1 − V2
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Choice probabilities of trinomial i.i.d. Probit and Logit

Symmetrie considerations: P2(V2 − V3, V1 − V3) = P1(V1 − V3, V2 − V3),

P3(V2 − V3, V1 − V3) = 1− P1 − P2
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8.3 Elasticities
I General definition:

Elasticities denote the percentaged change of endogenous variables yi
per small percentaged change of exogenous variables xj for an average
situation

εij =
x̄j
ȳi

∂yi
∂xj

∣∣∣∣
x=x̄,y=ȳ

I Regression:

y =
∑
j

βjxj + ε, εj =
x̄j
ȳ

∂y

∂xj
=
x̄j
ȳ
β̂j

I Discrete-choice models:
Generally, with several endogenous variables, one distinguishes between
I Substitution vs, full/ordinary elastities,
I Microscopic vs, macroscopic elastities,
I proper elasticity vs. cross-elasticity

? Why there are only substitution elastities in discrete-choice models?

! Because of the exclusivity condition on the alternatives
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8.3.1 Microscopic Logit elasticities

Since elasticities describe average aspects, we take the choice probabilities Pi rather than
the discrete actual choices as endogenous variables. For the general deterministic utilities

Vni =
∑
m

βmixmni

we derive the

I Proper (substitution) elasticities: The attribute (characteristic) m of an alternative i feeds
back on the demand for this alternative:

ε
(mic,m)
nii =

xmni
Pni

∂Pni
∂xmni

= βmxmni(1− Pni)

I Cross elasticities: The attribute (characteristic) m of an alternative j feeds back on the
demand for another alternative i 6= j:

ε
(mic,m)
nij =

xnmj
Pni

∂Pni
∂xnmj

= −βmxnmjPnj
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Some questions on micro-elasticities

? Derive the formulas for the proper and cross elasticities
! We start with the normal MNL choice probability Pni = eVni/

∑
k e

Vnk and first calculate the
sensitivities in terms of the derivatives of Vni with respect to xnmj :

∂Pni
∂xnmj

=
eVni∑
k e

Vnk

∂Vni
∂xnmj

− eVni

(
∑
k e

Vnk)
2

∂

∂xnmj

(∑
l

eVnl

)

= Pni
∂Vni
∂xnmj

−
∑
l

eVnieVnl

(
∑
k e

Vnk)
2

∂Vnl
∂xnmj

= Pni
∂Vni
∂xnmj

−
∑
l

PniPnl
∂Vnl
∂xnmj

where
∂Vni
∂xnmj

= βmδij ,
∂Vnl
∂xnmj

= βmδlj

Hence

∂Pni
∂xnmj

= βmPni (δij − Pnj) , ε
(mic,m)
nij =

xnmj
Pni

∂Pni
∂xnmj

= βmxnmj (δij − Pnj)

j = i: εnii = βmxnmi (1− Pni), j 6= i: εnij = −βmxnmjPnj
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Questions (2)

? Derive and motivate the “null sum” condition
∑

i Pniε
(m)
nij = 0

∑
i

Pniε
(m)
nij =

∑
i 6=j

Pniε
(m)
nij + Pniε

(m)
nii

= −
∑
i 6=j

PniβmxnmjPnj + Pniβmxnmi (1− Pni)

= βm

(
−
∑
i

PniPnjxnmj + Pnixnmi

)
= 0

(Notice
∑

i Pni = 1 in the last step!)
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Questions (3)

? The cross elasticities do not depend on i, i.e., on the target alternative for the
changing demand. Motivate this by the IIA condition
According to the IIA, if the utility of an alternative j changes, the changes of the
relative preferences with respect to all other alternatives are the same. Moreover, the
relative preferences are the probability ratios and their changes are the cross
elasticities

? Given are three airports i from which person n can book flights to a desired
destination at cost Cni (because of revenue management, C depends on n), so

Vni = β01δ01 + β02δ02 + β1Cni

Show that the proper elasticities are negative while the cross elasticities are positive.

Proper elasticity ε
(C)
nii = β1Cni(1− Pni) < 0 since Pni < 1 Cni > 0, and the price

sensitivity β1 < 0. The cross elasticities ε
(C)
nii = −β1CnjPnj are therefore positive.
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8.3.2 Macroscopic elasticities
For a company, the relative probability increase of single customers chosing their products
is not relevant but the aggregate over all customers. Hence, the macroscopic elasticity

ε
(mac,m)
ij =

Xmj

Ni

∂Ni

∂Xmj
, Xmj =

N∑
n=1

xnmj , Ni =

N∑
n=1

Pni

gives the percentage increase of people chosing alternative i when the sum of attributes
m increases at alternative j by one percent.

(i) Same absolute changes for all persons, dxnmj = dXmj /N :

ε
(mac,abs,m)
ij =

Xmj

Ni

1

N

∑
n

Pni
xnmj

ε
(mic,m)
nij

(ii) Same relatives changes for all, dxnmj /xnmj = dXmj /Xmj :

ε
(mac,rel,m)
ij =

∑
n

wni ε
(mic,m)
nij , wni =

Pni
Ni

=
Pni∑
n Pni
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