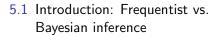


Matched line

GPS vertices

Rejected route (implied speed too fast)

5. Is the p value dead? Frequentist vs. Bayesian inference



5.2 General Methodics

- 5.4 Binary-Valued Quantities and Continuous Observations 5.4.1 Example: Map Matching
- 5.5 Continuous Quantities and Observations 5.5.1 Example: Gausian Priors and Observations
- 5.6 Conclusion

Econometrics Master's Course: Methods

▶ The classic **frequentist's** approach calculates the probability that the test function *T* is further away from *H*₀, (in the extreme range *E*_{data}) than the data realisation provided *H*₀ is marginally true:

 $p = P(T \in E_{\mathsf{data}} | H_0^*) \ge P(T \in E_{\mathsf{data}} | H_0)$

- ► The **Bayesian inference** tries to caculate what is actually interesting: The probability of *H*₀ given the data.
- ▶ If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating $T \in E_{data}$ as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \le p \, \frac{P(H_0)}{P(E_{\mathsf{data}})}$$

► For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly P(H₀|E_{data}) = P(H₀) = 0.

Econometrics Master's Course: Methods

▶ The classic **frequentist's** approach calculates the probability that the test function *T* is further away from *H*₀, (in the extreme range *E*_{data}) than the data realisation provided *H*₀ is marginally true:

 $p = P(T \in E_{\mathsf{data}} | H_0^*) \ge P(T \in E_{\mathsf{data}} | H_0)$

- ► The **Bayesian inference** tries to caculate what is actually interesting: The probability of *H*₀ given the data.
- ▶ If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating $T \in E_{data}$ as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \le p \, \frac{P(H_0)}{P(E_{\mathsf{data}})}$$

For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly $P(H_0|E_{data}) = P(H_0) = 0$.

Econometrics Master's Course: Methods

▶ The classic **frequentist's** approach calculates the probability that the test function *T* is further away from *H*₀, (in the extreme range *E*_{data}) than the data realisation provided *H*₀ is marginally true:

 $p = P(T \in E_{\mathsf{data}} | H_0^*) \ge P(T \in E_{\mathsf{data}} | H_0)$

- ► The **Bayesian inference** tries to caculate what is actually interesting: The probability of *H*₀ given the data.
- ▶ If the unconditional or **a-priori probabilities** were known, this is easy using **Bayes' theorem** (abbreviating $T \in E_{data}$ as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \le p \, \frac{P(H_0)}{P(E_{\mathsf{data}})}$$

For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly $P(H_0|E_{data}) = P(H_0) = 0$.

Econometrics Master's Course: Methods

▶ The classic **frequentist's** approach calculates the probability that the test function *T* is further away from *H*₀, (in the extreme range *E*_{data}) than the data realisation provided *H*₀ is marginally true:

 $p = P(T \in E_{\mathsf{data}} | H_0^*) \ge P(T \in E_{\mathsf{data}} | H_0)$

- ► The **Bayesian inference** tries to caculate what is actually interesting: The probability of *H*₀ given the data.
- ► If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating T ∈ E_{data} as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \le p \frac{P(H_0)}{P(E_{\mathsf{data}})}$$

For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly $P(H_0|E_{data}) = P(H_0) = 0$.

Econometrics Master's Course: Methods

▶ The classic **frequentist's** approach calculates the probability that the test function *T* is further away from *H*₀, (in the extreme range *E*_{data}) than the data realisation provided *H*₀ is marginally true:

 $p = P(T \in E_{\mathsf{data}} | H_0^*) \ge P(T \in E_{\mathsf{data}} | H_0)$

- ► The **Bayesian inference** tries to caculate what is actually interesting: The probability of *H*₀ given the data.
- ► If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating T ∈ E_{data} as E_{data})

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})} \le p \frac{P(H_0)}{P(E_{\mathsf{data}})}$$

► For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly P(H₀|E_{data}) = P(H₀) = 0.

- ▶ Principle: Update the a-priori probability $P(H_0)$ of some event H_0 (in particular, a null hypothesis) based on an observation B, e.g., $B : \hat{\beta} = b$ or $B : \hat{\beta} \in [b \delta/2, b + \delta/2]$ with some small δ
- Example: *H*₀: "tomorrow is nice weather"
 - ▶ $P(H_0)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - B: tomorrow's weather forecast $B \in \{$ will be nice, not nice $\}$
 - $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- ▶ Principle: Update the a-priori probability $P(H_0)$ of some event H_0 (in particular, a null hypothesis) based on an observation B, e.g., $B : \hat{\beta} = b$ or $B : \hat{\beta} \in [b \delta/2, b + \delta/2]$ with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ $P(H_0)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - B: tomorrow's weather forecast $B \in \{$ will be nice, not nice $\}$
 - $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - B: tomorrow's weather forecast B ∈ {will be nice, not nice}
 P(H₀|B): a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation $(H_0$ rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in \{$ will be nice, not nice $\}$

▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast

- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in \{$ will be nice, not nice $\}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability $P(H_0)$ of some event H_0 (in particular, a null hypothesis) based on an observation B, e.g., $B : \hat{\beta} = b$ or $B : \hat{\beta} \in [b \delta/2, b + \delta/2]$ with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous eta, discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation β
 (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - i) discrete β and continuous β (e.g., map-matching)
 - iii) continuous eta, discrete observation $(H_0$ rejected or not)
 - iv) continuous sought-after quantity β and continuous observation $\hat{\beta}$ (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - iii) continuous β , discrete observation (H_0 rejected or not) iv) continuous sought-after quantity β and continuous observation $\hat{\beta}$ (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous β , discrete observation (H_0 rejected or not)
 - iv) continuous sought-after quantity β and continuous observation $\hat{\beta}$ (e.g., regression models)

- Principle: Update the a-priori probability P(H₀) of some event H₀ (in particular, a null hypothesis) based on an observation B, e.g., B : β̂ = b or B : β̂ ∈ [b − δ/2, b + δ/2] with some small δ
- Example: H₀: "tomorrow is nice weather"
 - ▶ *P*(*H*₀): a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
 - ▶ *B*: tomorrow's weather forecast $B \in {\text{will be nice, not nice}}$
 - ▶ $P(H_0|B)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability P(B|H₀) that often can be expressed in terms of p. Want P(H₀|B)
- Four scaling possibilities
 - (i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
 - (ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
 - (iii) continuous β , discrete observation (H_0 rejected or not)
 - (iv) continuous sought-after quantity β and continuous observation $\hat{\beta}$ (e.g., regression models)

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = \text{true}, \quad \bar{H_0}: \beta = \text{false}, \quad B: \hat{\beta} = \text{true}; \quad \bar{B}: \hat{\beta} = \text{false}$$

$$P(B|H_0)P(H_0)$$

P(B)

Example: Covid-19 tests

 \blacktriangleright H_0 : person is infected; B: person is tested positive

 $F(II_0|D) =$

- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H}_0) = 97\%$, $P(B|\bar{H}_0) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
 - H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0) P(H_0) / P(\bar{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- \blacktriangleright H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H}_0) = 97\%$, $P(B|\bar{H}_0) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
 - H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0) / P(\bar{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = \text{true}, \quad \bar{H_0}: \beta = \text{false}, \quad B: \hat{\beta} = \text{true}; \quad \bar{B}: \hat{\beta} = \text{false}$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- ▶ H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H}_0) = 97\%$, $P(B|\bar{H}_0) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
 - H_0 after test negative: $P(H_0|B) = P(B|H_0)P(H_0)/P(B) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

Example: Covid-19 tests

• H_0 : person is infected; B: person is tested positive

Known:

- Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
- Specificity $P(\bar{B}|\bar{H}_0) = 97\%$, $P(B|\bar{H}_0) = 3\%$
- Incidence $P(H_0) = 5\%$

Bayes:

- Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
- H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
- H_0 after test negative: $P(H_0|B) = P(B|H_0)P(H_0)/P(B) = 0.27\%$

う

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H}_0) = 97\%$, $P(B|\bar{H}_0) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
 - H_0 after test negative: $P(H_0|\overline{B}) = P(\overline{B}|H_0)P(H_0)/P(\overline{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

Example: Covid-19 tests

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H_0}) = 97\%$, $P(B|\bar{H_0}) = 3\%$

• Incidence $P(H_0) = 5\%$

Bayes:

- Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H_0})P(\bar{H_0}) = 7.6\%$
- H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5\%$
- H_0 after test negative: $P(H_0|B) = P(B|H_0)P(H_0)/P(B) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

Example: Covid-19 tests

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H_0}) = 97\%$, $P(B|\bar{H_0}) = 3\%$
 - Incidence $P(H_0) = 5\%$

Bayes:

- Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H_0})P(\bar{H_0}) = 7.6\%$
- H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5$
- H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0)/P(\bar{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = \text{true}, \quad \bar{H_0}: \beta = \text{false}, \quad B: \hat{\beta} = \text{true}; \quad \bar{B}: \hat{\beta} = \text{false}$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H_0}) = 97\%$, $P(B|\bar{H_0}) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H}_0)P(\bar{H}_0) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5 \%$
 - H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0)/P(\bar{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H_0}) = 97\%$, $P(B|\bar{H_0}) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H_0})P(\bar{H_0}) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5 \%$
 - H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0)/P(\bar{B}) = 0.27\%$

Textbook case: binary variables \in { "true", "false" } (generalisations easy):

$$H_0: \beta = true, \quad \bar{H_0}: \beta = false, \quad B: \hat{\beta} = true; \quad \bar{B}: \hat{\beta} = false$$

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

- H_0 : person is infected; B: person is tested positive
- Known:
 - Sensitivity $P(B|H_0) = 95\%$ $P(\bar{B}|H_0) = 5\%$
 - Specificity $P(\bar{B}|\bar{H_0}) = 97\%$, $P(B|\bar{H_0}) = 3\%$
 - Incidence $P(H_0) = 5\%$
- Bayes:
 - Test incidence: $P(B) = P(B|H_0)P(H_0) + P(B|\bar{H_0})P(\bar{H_0}) = 7.6\%$
 - H_0 after test positive: $P(H_0|B) = P(B|H_0)P(H_0) / P(B) = 62.5 \%$
 - H_0 after test negative: $P(H_0|\bar{B}) = P(\bar{B}|H_0)P(H_0)/P(\bar{B}) = 0.27\%$

- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$

? What is the meaning of f(.)? ! density of estimation error

- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ▶ Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

$$\Rightarrow P(H_0|\hat{\beta} = b) = \frac{P(H_0)P(B|H_0)}{P(B)} = \frac{p_{j_0}f(b - \beta_{j_0})}{\sum_j p_j f(b - \beta_j)}$$

- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation B: $\hat{\beta} \in [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

$$\Rightarrow P(H_0|\hat{\beta}=b) = \frac{P(H_0)P(B|H_0)}{P(B)} = \frac{p_{j_0}f(b-\beta_{j_0})}{\sum_j p_jf(b-\beta_j)}$$

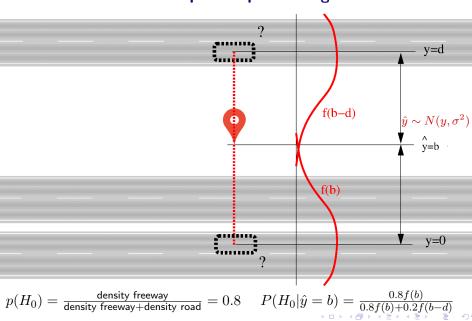
- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

$$\Rightarrow P(H_0|\hat{\beta} = b) = \frac{P(H_0)P(B|H_0)}{P(B)} = \frac{p_{j_0}f(b - \beta_{j_0})}{\sum_j p_j f(b - \beta_j)}$$

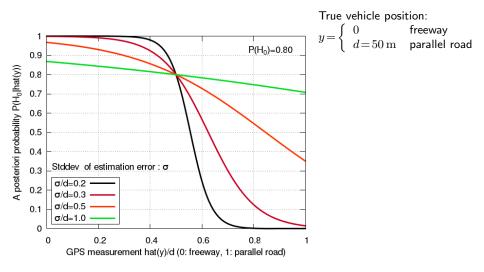
- Discrete quantity/parameter β with the prior distribution $P(\beta = \beta_j) = p_j, \quad \sum_j p_j = 1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g(\hat{\beta} \mid \beta = \beta_j) = f(\hat{\beta} \beta_j)$
 - ? What is the meaning of f(.)? ! density of estimation error
- Assume $H_0: \beta = \beta_{j_0}$ with $\beta_{j_0} \in \{\beta_j\}$ and the observation $B: \hat{\beta} \in [b \delta/2, b + \delta/2]$ with arbitrarily small δ :
- ► Bayes: $P(H_0) = p_{j_0}$, $P(B|H_0) = \delta f(b \beta_{j_0})$, and $P(B) = \delta \sum_j p_j f(b \beta_j)$

$$\Rightarrow P(H_0|\hat{\beta} = b) = \frac{P(H_0)P(B|H_0)}{P(B)} = \frac{p_{j_0}f(b - \beta_{j_0})}{\sum_j p_j f(b - \beta_j)}$$

Example: Map matching

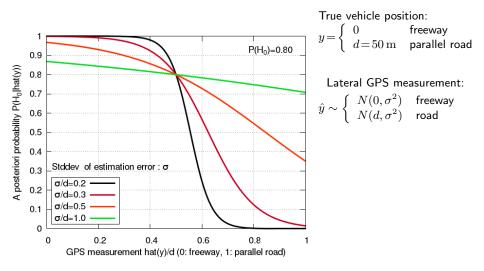


Map matching II

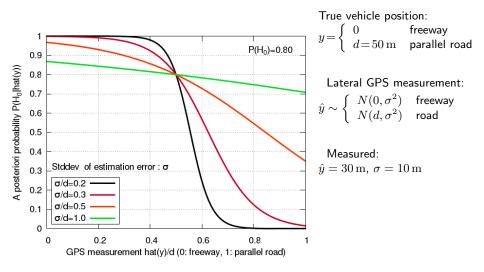


э.

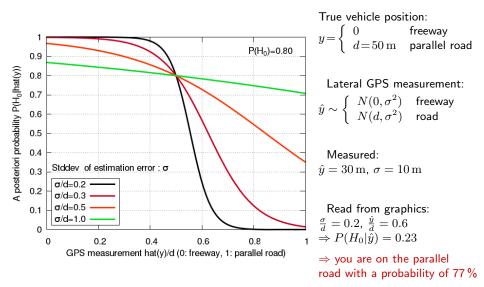
Map matching II



Map matching II



Map matching II



イロト 不得 トイヨト イヨト

э.

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p***-value and the power function** Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p***-value and the power function** Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p*-value and the power function Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p***-value and the power function** Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})}$$

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p***-value and the power function** Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})}$$
$$\xrightarrow{P(H_0) \to \int_{\beta \in H_0} h(\beta) \ \mathrm{d}(\beta)} = \frac{\int_{\beta \in H_0} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta}{\int_{\beta \in I\!\!R} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta}$$

- The quantity β has the a-priori distribution density $h(\beta)$
- ▶ Unlike discrete quantities/parameters, H_0 needs to be an interval instead of a point (why?) $\Rightarrow P(H_0)$ and $P(B|H_0)$ are integrals over the values of H_0

Relation of Bayesian inference to the *p***-value and the power function** Probability for H_0 based on measurements lying in the extreme region of a given measurement ($B = E_{data}$):

$$P(H_0|E_{\mathsf{data}}) = \frac{P(E_{\mathsf{data}}|H_0)P(H_0)}{P(E_{\mathsf{data}})}$$
$$\xrightarrow{P(H_0) \to \int_{\beta \in \underline{H}_0} h(\beta) \ \mathrm{d}(\beta)} = \frac{\int_{\beta \in H_0} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta}{\int_{\beta \in I\!\!R} P(E_{\mathsf{data}}|\beta)h(\beta) \ \mathrm{d}\beta}$$

Probability for H_0 based on a given realisation (measurement) $\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error β̂ − β is independent from β (as in the OLS estimator under Gauβ-Markow conditions), so β̂ has the conditional density g(b|β) = f(b − β)

Probability for H_0 based on a given realisation (measurement) $\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error β̂ − β is independent from β (as in the OLS estimator under Gauß-Markow conditions), so β̂ has the conditional density g(b|β) = f(b − β)

Probability for H_0 based on a given realisation (measurement) $\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error β̂ − β is independent from β (as in the OLS estimator under Gauβ-Markow conditions), so β̂ has the conditional density g(b|β) = f(b − β)

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

Probability for H_0 based on a given realisation (measurement) $\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error β̂ − β is independent from β (as in the OLS estimator under Gauß-Markow conditions), so β̂ has the conditional density g(b|β) = f(b − β)

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$
$$\stackrel{P(H_0) \to \int h(\beta) \ d(\beta)}{=} \frac{\int_{\beta \in H_0} \delta \ g(b|\beta)h(\beta) \ d\beta}{\int_{\beta \in \mathbb{R}} \delta \ g(b|\beta)h(\beta) \ d\beta}$$

Probability for H_0 based on a given realisation (measurement) $\hat{\beta} \in B = [b - \delta/2, b + \delta/2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error β̂ − β is independent from β (as in the OLS estimator under Gauß-Markow conditions), so β̂ has the conditional density g(b|β) = f(b − β)

$$P(H_0|B) = \frac{P(B|H_0)P(H_0)}{P(B)}$$

$$P(H_0) \rightarrow \int h(\beta) \ d(\beta) = \frac{\int_{\beta \in H_0} \delta \ g(b|\beta)h(\beta) \ d\beta}{\int_{\beta \in \mathbb{R}} \delta \ g(b|\beta)h(\beta) \ d\beta}$$

$$\Rightarrow \qquad P(H_0|B) = \frac{\int_{\beta \in H_0} f(b-\beta)h(\beta) \, \mathrm{d}\beta}{\int_{\beta \in \mathbb{R}} f(b-\beta)h(\beta) \, \mathrm{d}\beta}$$

Notice that the denominator is just the convolution $[f * h] \underset{(a) > b}{\text{at } \hat{\beta} = b}$

- -

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta/\sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta) / \sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$

Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b \frac{\sigma_\beta^2}{\sigma_\beta^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_\beta \sigma_b}{\sqrt{\sigma_\beta^2 + \sigma_b^2}}$$

- When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple interval null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0
- ▶ If $\sigma_b^2 \ll \sigma_{\beta}^2$ and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$ \Rightarrow "ressurrection" of the *p*-value!

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta/\sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta)/\sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$

UNIVERSITAT

Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b \frac{\sigma_\beta^2}{\sigma_\beta^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_\beta \sigma_b}{\sqrt{\sigma_\beta^2 + \sigma_b^2}}$$

When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple interval null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0

▶ If $\sigma_b^2 \ll \sigma_{\beta}^2$ and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$ \Rightarrow "ressurrection" of the *p*-value!

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta)/\sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$

Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b\frac{\sigma_\beta^2}{\sigma_\beta^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_\beta \sigma_b}{\sqrt{\sigma_\beta^2 + \sigma_b^2}}$$

When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple interval null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0

▶ If
$$\sigma_b^2 \ll \sigma_\beta^2$$
 and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$
⇒ "ressurrection" of the *p*-value!

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta)/\sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$
- Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b \frac{\sigma_\beta^2}{\sigma_\beta^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_\beta \sigma_b}{\sqrt{\sigma_\beta^2 + \sigma_b^2}}$$

When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0

▶ If
$$\sigma_b^2 \ll \sigma_\beta^2$$
 and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$
⇒ "ressurrection" of the *p*-value!

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta)/\sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$
- Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_{\beta}\sigma_b}{\sqrt{\sigma_{\beta}^2 + \sigma_b^2}}$$

- When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0
- ▶ If $\sigma_b^2 \ll \sigma_\beta^2$ and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$ ⇒ "ressurrection" of the *p*-value!

- ▶ Prior $\beta \sim N(0, \sigma_{\beta}^2)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0, 1)$
- Unbiased estimator $\hat{\beta} \sim N(\beta, \sigma_b^2)$, so $(b \beta)/\sigma_\beta \sim N(0, 1)$
- ▶ Null hypothesis H_0 : $\beta \leq \beta_0$, so $\int_{H_0} d\beta = \int_{-\infty}^{\beta_0} d\beta$
- Bayesian inference for H_0 under the observation $\hat{\beta} = b$ (long calc.):

$$P(H_0|\hat{\beta}) = \Phi\left(\frac{\beta_0 - \mu}{\sigma}\right), \quad \mu = b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2}, \quad \sigma = \frac{\sigma_{\beta}\sigma_b}{\sqrt{\sigma_{\beta}^2 + \sigma_b^2}}$$

- When expressing the observation in terms of the p value, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$ and β_0 in terms of $P(H_0)$, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β , any a-priori expectation $E(\beta)$, and any H_0 boundary value β_0
- ▶ If $\sigma_b^2 \ll \sigma_\beta^2$ and H_0 is an interval, we have $P(H_0|\hat{\beta}) \rightarrow p$ ⇒ "ressurrection" of the *p*-value!

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$
$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$
$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$
$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$
$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

- ? Show that, on the previous slide, $eta_0=\sigma_B\Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(\frac{\beta_0}{\sigma_A}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_\beta$.

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$

$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$

$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$

$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$

$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

- ? Show that, on the previous slide, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(rac{\beta_0}{\sigma_A}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_{\beta}$.

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$

$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$

$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$

$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$

$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

- ? Show that, on the previous slide, $eta_0=\sigma_eta\Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(\frac{\beta_0}{\sigma_\beta}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_\beta$.

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$
$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$
$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$
$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$
$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

- ? Show that, on the previous slide, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(\frac{\beta_0}{\sigma_\beta}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_\beta$.

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$
$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$
$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$
$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$
$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

- ? Show that, on the previous slide, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(\frac{\beta_0}{\sigma_\beta}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_\beta$.

- ? Show that, on the previous slide, $b = \beta_0 + \sigma_b \Phi^{-1}(1-p)$
- ! We assume known variance, so $T=(\hat{\beta}-\beta_0)/\sigma_b\sim N(0,1).$ For $H_0\colon\beta\leq\beta_0$ we have

$$p = 1 - \Phi(t_{data})$$
$$= 1 - \Phi\left(\frac{b - \beta_0}{\sigma_b}\right)$$
$$\Phi\left(\frac{b - \beta_0}{\sigma_b}\right) = 1 - p$$
$$\frac{b - \beta_0}{\sigma_b} = \Phi^{-1}(1 - p)$$
$$b = \beta_0 + \sigma_b \Phi^{-1}(1 - p)$$

- ? Show that, on the previous slide, $\beta_0 = \sigma_\beta \Phi^{-1}(P(H_0))$
- ! We have $P(H_0) = P(\beta \le \beta_0) = \Phi\left(\frac{\beta_0}{\sigma_\beta}\right)$, so $\Phi^{-1}(P(H_0)) = \beta_0/\sigma_\beta$.

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$

! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\mu = b rac{\sigma_{eta}^2}{\sigma_{eta}^2 + \sigma_b^2}$$

TECHNISCHE UNIVERSITAT

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$

! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\mu = b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} o b,$$

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 の

! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

UNIVERSITAT

we have
$$\begin{array}{lll} \mu & = & b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \\ \sigma & = & \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} \end{array}$$

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$

! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

UNIVERSITAT

we have
$$\begin{array}{lll} \mu & = & b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \\ \sigma & = & \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} \; = \; \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b \,, \end{array}$$

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$

! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b \,, \\ P(H_0 | \hat{\beta}) &\to \Phi\left(\frac{\beta_0 - b}{\sigma_b}\right) \end{split}$$

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b, \\ P(H_0 | \hat{\beta}) &\to \Phi \left(\frac{\beta_0 - b}{\sigma_b} \right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi \left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b} \right) \end{split}$$

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b \,, \\ P(H_0|\hat{\beta}) &\to \Phi\left(\frac{\beta_0 - b}{\sigma_b}\right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi\left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b}\right) \\ &= \Phi\left(-\Phi^{-1}(1 - p)\right) \end{split}$$

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b, \\ P(H_0|\hat{\beta}) &\to \Phi\left(\frac{\beta_0 - b}{\sigma_b}\right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi\left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b}\right) \\ &= \Phi\left(-\Phi^{-1}(1 - p)\right) \stackrel{\text{symm}}{=} \Phi\left(+\Phi^{-1}(p)\right) \end{split}$$

Questions II

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b, \\ P(H_0 | \hat{\beta}) &\to \Phi \left(\frac{\beta_0 - b}{\sigma_b} \right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi \left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b} \right) \\ &= \Phi \left(-\Phi^{-1}(1 - p) \right) \stackrel{\text{symm}}{=} \Phi \left(+\Phi^{-1}(p) \right) \stackrel{\text{def quantile}}{=} \underbrace{p} \checkmark \end{split}$$

Questions II

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b, \\ P(H_0 | \hat{\beta}) &\to \Phi\left(\frac{\beta_0 - b}{\sigma_b}\right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi\left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b}\right) \\ &= \Phi\left(-\Phi^{-1}(1 - p)\right) \stackrel{\text{symm}}{=} \Phi\left(+\Phi^{-1}(p)\right) \stackrel{\text{def quantile}}{=} \underbrace{\underline{p}} \checkmark \end{split}$$

! Answer to the second question, $\sigma_{\beta} \ll \sigma_b$:

Questions II

- ? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P(H_0|\hat{\beta}) \rightarrow p$ and, if it is much smaller, we have $P(H_0|\hat{\beta}) \rightarrow P(H_0)$
- ! Answer to the first question, $\sigma_{\beta} \gg \sigma_b$:

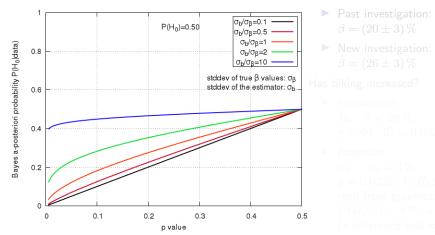
we have
$$\begin{split} \mu &= b \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_b^2} = b \frac{1}{1 + \frac{\sigma_b^2}{\sigma_{\beta}^2}} \to b, \\ \sigma &= \sigma_{\beta} \sigma_b / \sqrt{\sigma_{\beta}^2 + \sigma_b^2} = \sigma_b \sqrt{1 + \sigma_b^2 / \sigma_{\beta}^2} \to \sigma_b, \\ P(H_0 | \hat{\beta}) &\to \Phi\left(\frac{\beta_0 - b}{\sigma_b}\right) \stackrel{\beta_0 - b \text{ in terms of } p}{=} \Phi\left(\frac{-\sigma_b \Phi^{-1}(1 - p)}{\sigma_b}\right) \\ &= \Phi\left(-\Phi^{-1}(1 - p)\right) \stackrel{\text{symm}}{=} \Phi\left(+\Phi^{-1}(p)\right) \stackrel{\text{def quantile}}{=} \underbrace{\underline{p}} \checkmark \end{split}$$

! Answer to the second question, $\sigma_{\beta} \ll \sigma_b$:

we have $\mu \to 0$, $\sigma \to \sigma_{\beta}$, $P(H_0|\hat{\beta}) = \Phi(\beta/\sigma_{\beta}) = P(H_0)$ ~

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

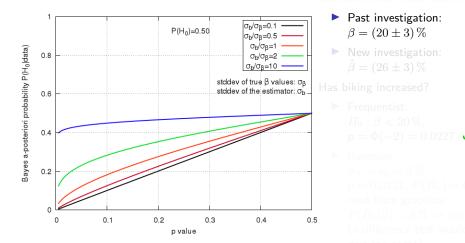
Bayesian inference for a Gaussian prior distribution 1: $P(H_0)=0.5$



Example: Bike modal split eta

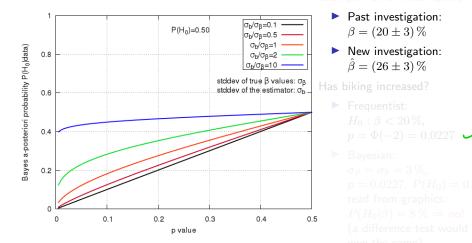
Bayesian inference for a Gaussian prior distribution 1: $P(H_0)=0.5$

Econometrics Master's Course: Methods



・ロト・日本・中国・ 日本 の

Bayesian inference for a Gaussian prior distribution 1: $P(H_0)=0.5$



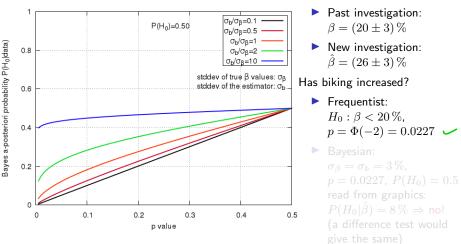
Bayesian inference for a Gaussian prior distribution 1: $P(H_0) = 0.5$

Past investigation: $\sigma_b/\sigma_\beta=0.1$ P(H₀)=0.50 $\beta = (20 \pm 3) \%$ $\sigma_{\rm b}/\sigma_{\rm B}=0.5$ $\sigma_b/\sigma_B=1$ Bayes a-posteriori probability P(H₀|data) New investigation: 0.8 $\sigma_b/\sigma_B=2$ $\hat{\beta} = (26 \pm 3) \%$ $\sigma_{\rm b}/\sigma_{\rm B}=10$ stddev of true β values: σ_β Has biking increased? stddev of the estimator: σ_b 0.6 Frequentist: 0.4 $p = \Phi(-2) = 0.0227$ 0.2 0 0 0.1 0.2 0.3 0.4 0.5 p value

・ロト・日下・日下・日、 ク

Bayesian inference for a Gaussian prior distribution 1: $P(H_0) = 0.5$

Example: Bike modal split β



Bayesian inference for a Gaussian prior distribution 1: $P(H_0)=0.5$

Past investigation: $\sigma_b/\sigma_B=0.1$ P(H₀)=0.50 $\beta = (20 \pm 3)\%$ $\sigma_{\rm b}/\sigma_{\rm B}=0.5$ $\sigma_b/\sigma_B=1$ New investigation: 0.8 $\sigma_b/\sigma_B=2$ $\hat{\beta} = (26 \pm 3) \%$ $\sigma_{\rm b}/\sigma_{\rm B}=10$ stddev of true β values: σ_β Has biking increased? stddev of the estimator: oh. 0.6 Frequentist: $H_0: \beta < 20\%$. 0.4 $p = \Phi(-2) = 0.0227$ ~ Bayesian: $\sigma_{\beta} = \sigma_b = 3\%$ 0.2 $p = 0.0227, P(H_0) = 0.5$ read from graphics: 0 $P(H_0|\hat{\beta}) = 8\% \Rightarrow \text{no!}$ 0 0.1 0.2 0.3 0.4 0.5

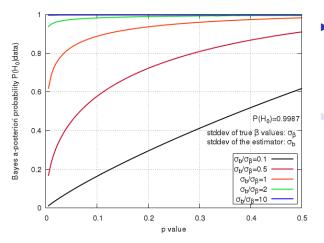
p value

(a difference test would give the same)

ъ

Example: Bike modal split β

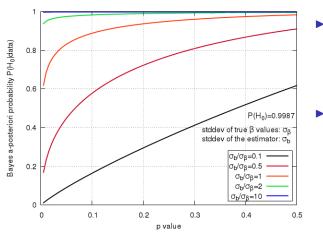
Bayesian inference for a Gaussian prior distribution 2: $P(H_0) = 0.9987$



• $\sigma_b \ll \sigma_\beta$ $\Rightarrow P(H_0|\hat{\beta}) \approx p$ \Rightarrow precise a-posteri information changes much.

• $\sigma_b \gg \sigma_\beta$ $\Rightarrow P(H_0|\hat{\beta}) \approx P(H_0)$ \Rightarrow fuzzy a-posteri data essentially give no information \Rightarrow a-priori probability nearly unchanged.

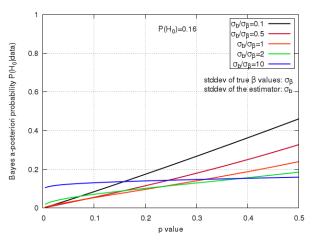
Bayesian inference for a Gaussian prior distribution 2: $P(H_0) = 0.9987$



• $\sigma_b \ll \sigma_\beta$ $\Rightarrow P(H_0|\hat{\beta}) \approx p$ \Rightarrow precise a-posteri information changes much.

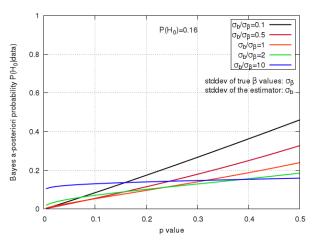
• $\sigma_b \gg \sigma_\beta$ $\Rightarrow P(H_0|\hat{\beta}) \approx P(H_0)$ \Rightarrow fuzzy a-posteri data essentially give no information \Rightarrow a-priori probability nearly unchanged.

Bayesian inference for a Gaussian prior distribution 3: $P(H_0) = 0.16$



Again, new data with $\sigma_b \ll \sigma_\beta$ gives much a-posteriori information (at least if p is significantly different from $P(H_0)$),

Bayesian inference for a Gaussian prior distribution 3: $P(H_0) = 0.16$



Again, new data with $\sigma_b \ll \sigma_\beta$ gives much a-posteriori information (at least if p is significantly different from $P(H_0)$),

New data with $\sigma_b \gg \sigma_\beta$ are tantamount to essentially no new information.

ъ

► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree

Discrete variables and continuous measurements:

- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree

Discrete variables and continuous measurements:

- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$

- ► For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics → probability tree
- Discrete variables and continuous measurements:
 - If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
 - If the uncertainty is much smaller, then the closest distance to the measurement matters
 - The *p* value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
 - The p value only gives a good estimate for the posterior probability $P(H_0|B)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
 - If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P(H_0)$