5. Is the p value dead? Frequentist vs. Bayesian inference
5.1 Introduction: Frequentist vs. Bayesian inference
5.2 General Methodics
5.3 Discrete Quantities and Observations 5.3.1 Example: Covid-19 Tests
5.4 Binary-Valued Quantities and Continuous Observations 5.4.1 Example: Map Matching
5.5 Continuous Quantities and Observations
5.5.1 Example: Gausian Priors and Observations
5.6 Conclusion

5.1 Introduction: Frequentist vs. Bayesian inference

- The classic frequentist's approach calculates the probability that the test function T is further away from H_{0}, (in the extreme range $E_{\text {data }}$) than the data realisation provided H_{0} is marginally true:

$$
p=P\left(T \in E_{\text {data }} \mid H_{0}^{*}\right) \geq P\left(T \in E_{\text {data }} \mid H_{0}\right)
$$

5.1 Introduction: Frequentist vs. Bayesian inference

- The classic frequentist's approach calculates the probability that the test function T is further away from H_{0}, (in the extreme range $E_{\text {data }}$) than the data realisation provided H_{0} is marginally true:

$$
p=P\left(T \in E_{\text {data }} \mid H_{0}^{*}\right) \geq P\left(T \in E_{\text {data }} \mid H_{0}\right)
$$interesting: The probability of H_{0} given the data

5.1 Introduction: Frequentist vs. Bayesian inference

- The classic frequentist's approach calculates the probability that the test function T is further away from H_{0}, (in the extreme range $E_{\text {data }}$) than the data realisation provided H_{0} is marginally true:

$$
p=P\left(T \in E_{\text {data }} \mid H_{0}^{*}\right) \geq P\left(T \in E_{\text {data }} \mid H_{0}\right)
$$

- The Bayesian inference tries to caculate what is actually interesting: The probability of H_{0} given the data.

5.1 Introduction: Frequentist vs. Bayesian inference

- The classic frequentist's approach calculates the probability that the test function T is further away from H_{0}, (in the extreme range $E_{\text {data }}$) than the data realisation provided H_{0} is marginally true:

$$
p=P\left(T \in E_{\text {data }} \mid H_{0}^{*}\right) \geq P\left(T \in E_{\text {data }} \mid H_{0}\right)
$$

- The Bayesian inference tries to caculate what is actually interesting: The probability of H_{0} given the data.
- If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating $T \in E_{\text {data }}$ as $E_{\text {data }}$)

$$
P\left(H_{0} \mid E_{\text {data }}\right)=\frac{P\left(E_{\text {data }} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)} \leq p \frac{P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)}
$$

- For real-valued parameters, interval null hypotheses since, for a point null hypothesis, we have exactly $P\left(H_{0} \mid E_{\text {data }}\right)=P\left(H_{0}\right)=0$.

5.1 Introduction: Frequentist vs. Bayesian inference

- The classic frequentist's approach calculates the probability that the test function T is further away from H_{0}, (in the extreme range $E_{\text {data }}$) than the data realisation provided H_{0} is marginally true:

$$
p=P\left(T \in E_{\text {data }} \mid H_{0}^{*}\right) \geq P\left(T \in E_{\text {data }} \mid H_{0}\right)
$$

- The Bayesian inference tries to caculate what is actually interesting: The probability of H_{0} given the data.
- If the unconditional or a-priori probabilities were known, this is easy using Bayes' theorem (abbreviating $T \in E_{\text {data }}$ as $E_{\text {data }}$)

$$
P\left(H_{0} \mid E_{\text {data }}\right)=\frac{P\left(E_{\text {data }} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)} \leq p \frac{P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)}
$$

- For real-valued parameters, this obviously makes only sense for interval null hypotheses since, for a point null hypothesis, we have exactly $P\left(H_{0} \mid E_{\text {data }}\right)=P\left(H_{0}\right)=0$.

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$
- Four scaling possibilities

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$
- Four scaling possibilities
(i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$
- Four scaling possibilities
(i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
(ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$
- Four scaling possibilities
(i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
(ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
(iii) continuous β, discrete observation (H_{0} rejected or not)

5.2 General Idea

- Principle: Update the a-priori probability $P\left(H_{0}\right)$ of some event H_{0} (in particular, a null hypothesis) based on an observation B, e.g., $B: \hat{\beta}=b$ or $B: \hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with some small δ
- Example: H_{0} : "tomorrow is nice weather"
- $P\left(H_{0}\right)$: a-priori probability before hearing the weather forecast (or the general probability based on climate tables)
- B : tomorrow's weather forecast $B \in\{$ will be nice, not nice $\}$
- $P\left(H_{0} \mid B\right)$: a-posteriori probability after hearing the forecast
- Relation to classical frequentist's statistics: Known are some observation B and conditional probability $P\left(B \mid H_{0}\right)$ that often can be expressed in terms of p. Want $P\left(H_{0} \mid B\right)$
- Four scaling possibilities
(i) discrete β and $\hat{\beta}$ (e.g., Covid-19 test)
(ii) discrete β and continuous $\hat{\beta}$ (e.g., map-matching)
(iii) continuous β, discrete observation (H_{0} rejected or not)
(iv) continuous sought-after quantity β and continuous observation $\hat{\beta}$ (e.g., regression models)

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true; } \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true; } \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true; } \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true; } \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$
- Specificity $P\left(\bar{B} \mid \bar{H}_{0}\right)=97 \%, \quad P\left(B \mid \bar{H}_{0}\right)=3 \%$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$
- Specificity $P\left(\bar{B} \mid \bar{H}_{0}\right)=97 \%, \quad P\left(B \mid \bar{H}_{0}\right)=3 \%$
- Incidence $P\left(H_{0}\right)=5 \%$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$
- Specificity $P\left(\bar{B} \mid \bar{H}_{0}\right)=97 \%, \quad P\left(B \mid \bar{H}_{0}\right)=3 \%$
- Incidence $P\left(H_{0}\right)=5 \%$
- Bayes:
- Test incidence: $P(B)=P\left(B \mid H_{0}\right) P\left(H_{0}\right)+P\left(B \mid \bar{H}_{0}\right) P\left(\bar{H}_{0}\right)=7.6 \%$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$
- Specificity $P\left(\bar{B} \mid \bar{H}_{0}\right)=97 \%, \quad P\left(B \mid \bar{H}_{0}\right)=3 \%$
- Incidence $P\left(H_{0}\right)=5 \%$
- Bayes:
- Test incidence: $P(B)=P\left(B \mid H_{0}\right) P\left(H_{0}\right)+P\left(B \mid \bar{H}_{0}\right) P\left(\bar{H}_{0}\right)=7.6 \%$
- H_{0} after test positive: $P\left(H_{0} \mid B\right)=P\left(B \mid H_{0}\right) P\left(H_{0}\right) / P(B)=62.5 \%$

5.3 Bayesian Inference for Discrete Quantities and Observations

Textbook case: binary variables $\in\{$ "true", "false" $\}$ (generalisations easy):

$$
H_{0}: \beta=\text { true }, \quad \bar{H}_{0}: \beta=\text { false }, \quad B: \hat{\beta}=\text { true } ; \quad \bar{B}: \hat{\beta}=\text { false }
$$

$$
P\left(H_{0} \mid B\right)=\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Example: Covid-19 tests

- H_{0} : person is infected; B : person is tested positive
- Known:
- Sensitivity $P\left(B \mid H_{0}\right)=95 \% \quad P\left(\bar{B} \mid H_{0}\right)=5 \%$
- Specificity $P\left(\bar{B} \mid \bar{H}_{0}\right)=97 \%, \quad P\left(B \mid \bar{H}_{0}\right)=3 \%$
- Incidence $P\left(H_{0}\right)=5 \%$
- Bayes:
- Test incidence: $P(B)=P\left(B \mid H_{0}\right) P\left(H_{0}\right)+P\left(B \mid \bar{H}_{0}\right) P\left(\bar{H}_{0}\right)=7.6 \%$
- H_{0} after test positive: $P\left(H_{0} \mid B\right)=P\left(B \mid H_{0}\right) P\left(H_{0}\right) / P(B)=62.5 \%$
- H_{0} after test negative: $P\left(H_{0} \mid \bar{B}\right)=P\left(\bar{B} \mid H_{0}\right) P\left(H_{0}\right) / P(\bar{B})=0.27 \%$

5.4 Bayesian Inference for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement β with a given distribution of density

5.4 Bayesian Inference for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$

5.4 Bayesian Inference
 for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$
? What is the meaning of $f($.$) ?$

5.4 Bayesian Inference for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$
? What is the meaning of $f($.$) ? ! density of estimation error$

- Assume H_{0}

5.4 Bayesian Inference

for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$
? What is the meaning of $f($.$) ? ! density of estimation error$
- Assume $H_{0}: \beta=\beta_{j_{0}}$ with $\beta_{j_{0}} \in\left\{\beta_{j}\right\}$ and the observation B : $\hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

5.4 Bayesian Inference

 for Discrete Quantities and Continuous Observations- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$
? What is the meaning of $f($.$) ? ! density of estimation error$
- Assume $H_{0}: \beta=\beta_{j_{0}}$ with $\beta_{j_{0}} \in\left\{\beta_{j}\right\}$ and the observation B : $\hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :
- Bayes: $P\left(H_{0}\right)=p_{j_{0}}, P\left(B \mid H_{0}\right)=\delta f\left(b-\beta_{j_{0}}\right)$, and $P(B)=\delta \sum_{j} p_{j} f\left(b-\beta_{j}\right)$

5.4 Bayesian Inference for Discrete Quantities and Continuous Observations

- Discrete quantity/parameter β with the prior distribution $P\left(\beta=\beta_{j}\right)=p_{j}, \quad \sum_{j} p_{j}=1$
- Continuous measurement $\hat{\beta}$ with a given distribution of density $g\left(\hat{\beta} \mid \beta=\beta_{j}\right)=f\left(\hat{\beta}-\beta_{j}\right)$
? What is the meaning of $f($.$) ? ! density of estimation error$
- Assume $H_{0}: \beta=\beta_{j_{0}}$ with $\beta_{j_{0}} \in\left\{\beta_{j}\right\}$ and the observation B : $\hat{\beta} \in[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :
- Bayes: $P\left(H_{0}\right)=p_{j_{0}}, P\left(B \mid H_{0}\right)=\delta f\left(b-\beta_{j_{0}}\right)$, and $P(B)=\delta \sum_{j} p_{j} f\left(b-\beta_{j}\right)$

$$
\Rightarrow \quad P\left(H_{0} \mid \hat{\beta}=b\right)=\frac{P\left(H_{0}\right) P\left(B \mid H_{0}\right)}{P(B)}=\frac{p_{j_{0}} f\left(b-\beta_{j_{0}}\right)}{\sum_{j} p_{j} f\left(b-\beta_{j}\right)}
$$

Example: Map matching

$$
p\left(H_{0}\right)=\frac{\text { density freeway }}{\text { density freeway+density road }}=0.8 \quad P\left(H_{0} \mid \hat{y}=b\right)=\frac{0.8 f(b)}{0.8 f(b)+0.2 f(b-d)}
$$

Map matching II

True vehicle position:
$y= \begin{cases}0 & \text { freeway } \\ d=50 \mathrm{~m} & \text { parallel road }\end{cases}$

Map matching II

True vehicle position:
$y= \begin{cases}0 & \text { freeway } \\ d=50 \mathrm{~m} & \text { parallel road }\end{cases}$

Lateral GPS measurement:
$\hat{y} \sim \begin{cases}N\left(0, \sigma^{2}\right) & \text { freeway } \\ N\left(d, \sigma^{2}\right) & \text { road }\end{cases}$

Map matching II

True vehicle position:
$y= \begin{cases}0 & \text { freeway } \\ d=50 \mathrm{~m} & \text { parallel road }\end{cases}$

Lateral GPS measurement:
$\hat{y} \sim \begin{cases}N\left(0, \sigma^{2}\right) & \text { freeway } \\ N\left(d, \sigma^{2}\right) & \text { road }\end{cases}$

Measured:
$\hat{y}=30 \mathrm{~m}, \sigma=10 \mathrm{~m}$

Map matching II

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

Relation of Bayesian inference to the p-value and the power function Probability for H_{0} based on measurements lying in the extreme region of a given measurement ($B=E_{\text {data }}$):

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

Relation of Bayesian inference to the p-value and the power function Probability for H_{0} based on measurements lying in the extreme region of a given measurement ($B=E_{\text {data }}$):

$$
P\left(H_{0} \mid E_{\text {data }}\right)
$$

$$
=\quad \frac{P\left(E_{\mathrm{data}} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(E_{\mathrm{data}}\right)}
$$

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

Relation of Bayesian inference to the p-value and the power function Probability for H_{0} based on measurements lying in the extreme region of a given measurement ($B=E_{\text {data }}$):

$$
\begin{array}{cll}
P\left(H_{0} \mid E_{\text {data }}\right) & = & \frac{P\left(E_{\text {data }} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)} \\
P\left(H_{0}\right) \rightarrow \int_{\beta \in H_{0}} h(\beta) \mathrm{d}(\beta) & \frac{\int_{\beta \in H_{0}} P\left(E_{\text {data }} \mid \beta\right) h(\beta) \mathrm{d} \beta}{\int_{\beta \in \mathbb{R}} P\left(E_{\text {data }} \mid \beta\right) h(\beta) \mathrm{d} \beta}
\end{array}
$$

5.5 Bayesian Inference for Continuous Quantities and Measurements

- The quantity β has the a-priori distribution density $h(\beta)$
- Unlike discrete quantities/parameters, H_{0} needs to be an interval instead of a point (why?) $\Rightarrow P\left(H_{0}\right)$ and $P\left(B \mid H_{0}\right)$ are integrals over the values of H_{0}

Relation of Bayesian inference to the p-value and the power function Probability for H_{0} based on measurements lying in the extreme region of a given measurement ($B=E_{\text {data }}$):

$$
\begin{array}{cll}
P\left(H_{0} \mid E_{\text {data }}\right) & = & \frac{P\left(E_{\text {data }} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(E_{\text {data }}\right)} \\
P\left(H_{0}\right) \rightarrow \int_{\beta \in H_{0}} h(\beta) \mathrm{d}(\beta) & \frac{\int_{\beta \in H_{0}} P\left(E_{\text {data }} \mid \beta\right) h(\beta) \mathrm{d} \beta}{\int_{\beta \in \mathbb{R}} P\left(E_{\text {data }} \mid \beta\right) h(\beta) \mathrm{d} \beta}
\end{array}
$$

$P\left(E_{\text {data }} \mid \beta\right)$ is related to the p-value $P\left(E_{\text {data }} \mid \beta_{0} \in H_{0}^{*}\right)$ and also to the power function $\pi_{\alpha}(\beta)=P\left(R_{\alpha} \mid \beta\right) \quad\left[R_{\alpha}=\right.$ rejection region at $\left.\alpha\right]$

Inference for a given measurement

Probability for H_{0} based on a given realisation (measurement)
$\hat{\beta} \in B=[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
estimator under Gauß-Markow conditions), so β has the conditional
density $g(b \mid \beta)=f(b-\beta)$

Inference for a given measurement

Probability for H_{0} based on a given realisation (measurement)
$\hat{\beta} \in B=[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error $\hat{\beta}-\beta$ is independent from β (as in the OLS estimator under Gauß-Markow conditions), so $\hat{\beta}$ has the conditional density $g(b \mid \beta)=f(b-\beta)$

Inference for a given measurement

Probability for H_{0} based on a given realisation (measurement)
$\hat{\beta} \in B=[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error $\hat{\beta}-\beta$ is independent from β (as in the OLS estimator under Gauß-Markow conditions), so $\hat{\beta}$ has the conditional density $g(b \mid \beta)=f(b-\beta)$

$$
P\left(H_{0} \mid B\right) \quad=\quad \frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)}
$$

Inference for a given measurement

Probability for H_{0} based on a given realisation (measurement)
$\hat{\beta} \in B=[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error $\hat{\beta}-\beta$ is independent from β (as in the OLS estimator under Gauß-Markow conditions), so $\hat{\beta}$ has the conditional density $g(b \mid \beta)=f(b-\beta)$

$$
\begin{array}{rll}
P\left(H_{0} \mid B\right) & = & \frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)} \\
P\left(H_{0}\right) \rightarrow \iint^{h}(\beta) \mathrm{d}(\beta) & \frac{\int_{\beta \in H_{0}} \delta g(b \mid \beta) h(\beta) \mathrm{d} \beta}{\int_{\beta \in \mathbb{R}} \delta g(b \mid \beta) h(\beta) \mathrm{d} \beta}
\end{array}
$$

Inference for a given measurement

Probability for H_{0} based on a given realisation (measurement)
$\hat{\beta} \in B=[b-\delta / 2, b+\delta / 2]$ with arbitrarily small δ :

- β has the a-priori distribution density $h(\beta)$
- The estimation error $\hat{\beta}-\beta$ is independent from β (as in the OLS estimator under Gauß-Markow conditions), so $\hat{\beta}$ has the conditional density $g(b \mid \beta)=f(b-\beta)$

$$
\begin{aligned}
P\left(H_{0} \mid B\right) & =\frac{P\left(B \mid H_{0}\right) P\left(H_{0}\right)}{P(B)} \\
P\left(H_{0}\right) \rightarrow \int_{=}^{h(\beta) \mathrm{d}(\beta)} & \frac{\int_{\beta \in H_{0}} \delta g(b \mid \beta) h(\beta) \mathrm{d} \beta}{\int_{\beta \in \mathbb{R}} \delta g(b \mid \beta) h(\beta) \mathrm{d} \beta} \\
\Rightarrow \quad P\left(H_{0} \mid B\right) & =\frac{\int_{\beta \in H_{0}} f(b-\beta) h(\beta) \mathrm{d} \beta}{\int_{\beta \in \mathbb{R}} f(b-\beta) h(\beta) \mathrm{d} \beta}
\end{aligned}
$$

Notice that the denominator is just the convolution $[f * h]$ at $\hat{\beta}=b$

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$
- Unbiased estimator $\hat{\beta} \sim N\left(\beta, \sigma_{b}^{2}\right)$, so $(b-\beta) / \sigma_{\beta} \sim N(0,1)$

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$
- Unbiased estimator $\hat{\beta} \sim N\left(\beta, \sigma_{b}^{2}\right)$, so $(b-\beta) / \sigma_{\beta} \sim N(0,1)$
- Null hypothesis $H_{0}: \beta \leq \beta_{0}$, so $\int_{H_{0}} \mathrm{~d} \beta=\int_{-\infty}^{\beta_{0}} \mathrm{~d} \beta$

B Bayesian inference for H_{0} under the observation $\beta=b$ (long calc.)

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$
- Unbiased estimator $\hat{\beta} \sim N\left(\beta, \sigma_{b}^{2}\right)$, so $(b-\beta) / \sigma_{\beta} \sim N(0,1)$
- Null hypothesis $H_{0}: \beta \leq \beta_{0}$, so $\int_{H_{0}} \mathrm{~d} \beta=\int_{-\infty}^{\beta_{0}} \mathrm{~d} \beta$
- Bayesian inference for H_{0} under the observation $\hat{\beta}=b$ (long calc.):

$$
P\left(H_{0} \mid \hat{\beta}\right)=\Phi\left(\frac{\beta_{0}-\mu}{\sigma}\right), \quad \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}, \quad \sigma=\frac{\sigma_{\beta} \sigma_{b}}{\sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}}
$$

- When expressing the observation in terms of the p value, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$ and β_{0} in terms of $P\left(H_{0}\right)$, intervall null hypothesis for a single parameter β, any a-priori expectation $E(\beta)$, and any H_{0} boundary value β_{0}

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$
- Unbiased estimator $\hat{\beta} \sim N\left(\beta, \sigma_{b}^{2}\right)$, so $(b-\beta) / \sigma_{\beta} \sim N(0,1)$
- Null hypothesis $H_{0}: \beta \leq \beta_{0}$, so $\int_{H_{0}} \mathrm{~d} \beta=\int_{-\infty}^{\beta_{0}} \mathrm{~d} \beta$
- Bayesian inference for H_{0} under the observation $\hat{\beta}=b$ (long calc.):

$$
P\left(H_{0} \mid \hat{\beta}\right)=\Phi\left(\frac{\beta_{0}-\mu}{\sigma}\right), \quad \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}, \quad \sigma=\frac{\sigma_{\beta} \sigma_{b}}{\sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}}
$$

- When expressing the observation in terms of the p value, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$ and β_{0} in terms of $P\left(H_{0}\right)$, $\beta_{0}=\sigma_{\beta} \Phi^{-1}\left(P\left(H_{0}\right)\right)$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β, any a-priori expectation $E(\beta)$, and any H_{0} boundary value β_{0}

Example: Gaussian Prior Distribution and Observations

- Prior $\beta \sim N\left(0, \sigma_{\beta}^{2}\right)$ (maximum ignorance), so $\beta / \sigma_{\beta} \sim N(0,1)$
- Unbiased estimator $\hat{\beta} \sim N\left(\beta, \sigma_{b}^{2}\right)$, so $(b-\beta) / \sigma_{\beta} \sim N(0,1)$
- Null hypothesis $H_{0}: \beta \leq \beta_{0}$, so $\int_{H_{0}} \mathrm{~d} \beta=\int_{-\infty}^{\beta_{0}} \mathrm{~d} \beta$
- Bayesian inference for H_{0} under the observation $\hat{\beta}=b$ (long calc.):

$$
P\left(H_{0} \mid \hat{\beta}\right)=\Phi\left(\frac{\beta_{0}-\mu}{\sigma}\right), \quad \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}, \quad \sigma=\frac{\sigma_{\beta} \sigma_{b}}{\sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}}
$$

- When expressing the observation in terms of the p value, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$ and β_{0} in terms of $P\left(H_{0}\right)$, $\beta_{0}=\sigma_{\beta} \Phi^{-1}\left(P\left(H_{0}\right)\right)$ (derive!), this result is valid for any simple intervall null hypothesis for a single parameter β, any a-priori expectation $E(\beta)$, and any H_{0} boundary value β_{0}
- If $\sigma_{b}^{2} \ll \sigma_{\beta}^{2}$ and H_{0} is an interval, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ \Rightarrow "ressurrection" of the p-value!

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$

We assume known variance, have

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$
! We assume known variance, so $T=\left(\hat{\beta}-\beta_{0}\right) / \sigma_{b} \sim N(0,1)$. For $H_{0}: \beta \leq \beta_{0}$ we have

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$
! We assume known variance, so $T=\left(\hat{\beta}-\beta_{0}\right) / \sigma_{b} \sim N(0,1)$. For $H_{0}: \beta \leq \beta_{0}$ we have

$$
\begin{aligned}
p & =1-\Phi\left(t_{\mathrm{data}}\right) \\
& =1-\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right)
\end{aligned}
$$

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$
! We assume known variance, so $T=\left(\hat{\beta}-\beta_{0}\right) / \sigma_{b} \sim N(0,1)$. For $H_{0}: \beta \leq \beta_{0}$ we have

$$
\begin{aligned}
p & =1-\Phi\left(t_{\text {data }}\right) \\
& =1-\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) \\
\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) & =1-p \\
\frac{b-\beta_{0}}{\sigma_{b}} & =\Phi^{-1}(1-p) \\
b & =\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)
\end{aligned}
$$

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$
! We assume known variance, so $T=\left(\hat{\beta}-\beta_{0}\right) / \sigma_{b} \sim N(0,1)$. For $H_{0}: \beta \leq \beta_{0}$ we have

$$
\begin{aligned}
p & =1-\Phi\left(t_{\text {data }}\right) \\
& =1-\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) \\
\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) & =1-p \\
\frac{b-\beta_{0}}{\sigma_{b}} & =\Phi^{-1}(1-p) \\
b & =\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)
\end{aligned}
$$

? Show that, on the previous slide, $\beta_{0}=\sigma_{\beta} \Phi^{-1}\left(P\left(H_{0}\right)\right)$
\square

Questions

? Show that, on the previous slide, $b=\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)$
! We assume known variance, so $T=\left(\hat{\beta}-\beta_{0}\right) / \sigma_{b} \sim N(0,1)$. For $H_{0}: \beta \leq \beta_{0}$ we have

$$
\begin{aligned}
p & =1-\Phi\left(t_{\text {data }}\right) \\
& =1-\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) \\
\Phi\left(\frac{b-\beta_{0}}{\sigma_{b}}\right) & =1-p \\
\frac{b-\beta_{0}}{\sigma_{b}} & =\Phi^{-1}(1-p) \\
b & =\beta_{0}+\sigma_{b} \Phi^{-1}(1-p)
\end{aligned}
$$

? Show that, on the previous slide, $\beta_{0}=\sigma_{\beta} \Phi^{-1}\left(P\left(H_{0}\right)\right)$
! We have $P\left(H_{0}\right)=P\left(\beta \leq \beta_{0}\right)=\Phi\left(\frac{\beta_{0}}{\sigma_{\beta}}\right)$, so $\Phi^{-1}\left(P\left(H_{0}\right)\right)=\beta_{0} / \sigma_{\beta}$.

Questions II

we have

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$

Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have $\quad \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have $\quad \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b$,

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b}
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right)
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
& \mu=b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
& \sigma=\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
& P\left(H_{0} \mid \hat{\beta}\right) \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \text { in terms of } p \\
&=
\end{aligned}\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right),
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \text { in terms of } p \\
= & \Phi\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right) \\
& =\Phi\left(-\Phi^{-1}(1-p)\right)
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \stackrel{\text { in terms of } p}{=} \Phi\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right) \\
& =\Phi\left(-\Phi^{-1}(1-p)\right) \stackrel{\text { symm }}{=} \Phi\left(+\Phi^{-1}(p)\right)
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \stackrel{\text { in terms of } p}{=} \Phi\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right) \\
& =\Phi\left(-\Phi^{-1}(1-p)\right) \stackrel{\text { symm }}{=} \Phi\left(+\Phi^{-1}(p)\right) \stackrel{\text { def quantile }}{=} \underset{=}{=}
\end{aligned}
$$

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \stackrel{\text { in terms of } p}{=} \Phi\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right) \\
& =\Phi\left(-\Phi^{-1}(1-p)\right) \stackrel{\text { symm }}{=} \Phi\left(+\Phi^{-1}(p)\right) \stackrel{\text { def quantile }}{=} \underset{=}{=}
\end{aligned}
$$

! Answer to the second question, $\sigma_{\beta} \ll \sigma_{b}$:

Questions II

? Show that, if the variance of the prior distribution is much larger than that of the measurement, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow p$ and, if it is much smaller, we have $P\left(H_{0} \mid \hat{\beta}\right) \rightarrow P\left(H_{0}\right)$
! Answer to the first question, $\sigma_{\beta} \gg \sigma_{b}$:
we have

$$
\begin{aligned}
\mu & =b \frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=b \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{\beta}^{2}}} \rightarrow b \\
\sigma & =\sigma_{\beta} \sigma_{b} / \sqrt{\sigma_{\beta}^{2}+\sigma_{b}^{2}}=\sigma_{b} \sqrt{1+\sigma_{b}^{2} / \sigma_{\beta}^{2}} \rightarrow \sigma_{b} \\
P\left(H_{0} \mid \hat{\beta}\right) & \rightarrow \Phi\left(\frac{\beta_{0}-b}{\sigma_{b}}\right) \quad \beta_{0}-b \stackrel{\text { in terms of } p}{=} \Phi\left(\frac{-\sigma_{b} \Phi^{-1}(1-p)}{\sigma_{b}}\right) \\
& =\Phi\left(-\Phi^{-1}(1-p)\right) \stackrel{\text { symm }}{=} \Phi\left(+\Phi^{-1}(p)\right) \stackrel{\text { def quantile }}{=} \underset{=}{=}
\end{aligned}
$$

! Answer to the second question, $\sigma_{\beta} \ll \sigma_{b}$:
we have $\mu \rightarrow 0, \sigma \rightarrow \sigma_{\beta}, P\left(H_{0} \mid \hat{\beta}\right)=\Phi\left(\beta / \sigma_{\beta}\right)=P\left(H_{0}\right)$

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

- Past investigation:
$\beta=(20 \pm 3) \%$

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

- Past investigation:
$\beta=(20 \pm 3) \%$
- New investigation:
$\hat{\beta}=(26 \pm 3) \%$

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

- Past investigation:
$\beta=(20 \pm 3) \%$
- New investigation:
$\hat{\beta}=(26 \pm 3) \%$
Has biking increased?

give the same)

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

- Past investigation:
$\beta=(20 \pm 3) \%$
- New investigation:
$\hat{\beta}=(26 \pm 3) \%$
Has biking increased?
- Frequentist:

$$
\begin{aligned}
& H_{0}: \beta<20 \% \\
& p=\Phi(-2)=0.0227
\end{aligned}
$$

- Bayesian:

give the same)

Bayesian inference for a Gaussian prior distribution 1: $P\left(H_{0}\right)=0.5$

Example: Bike modal split β

- Past investigation:

$$
\beta=(20 \pm 3) \%
$$

- New investigation:
$\hat{\beta}=(26 \pm 3) \%$
Has biking increased?
- Frequentist:

$$
\begin{aligned}
& H_{0}: \beta<20 \% \\
& p=\Phi(-2)=0.0227
\end{aligned}
$$

- Bayesian:

$$
\sigma_{\beta}=\sigma_{b}=3 \%
$$

$$
p=0.0227, P\left(H_{0}\right)=0.5
$$ read from graphics:

$P\left(H_{0} \mid \hat{\beta}\right)=8 \% \Rightarrow$ no!
(a difference test would give the same)

Bayesian inference for a Gaussian prior distribution 2: $P\left(H_{0}\right)=0.9987$

$>\sigma_{b} \ll \sigma_{\beta}$
$\Rightarrow P\left(H_{0} \mid \hat{\beta}\right) \approx p$
\Rightarrow precise a-posteri
information changes much.
σ_{b}
$\Rightarrow P\left(H_{0} \mid \hat{\beta}\right) \approx P\left(H_{0}\right.$
\Rightarrow fuzzy a-posteri data
essentially give no
information \Rightarrow a-priori
probability nearly

Bayesian inference for a Gaussian prior distribution 2: $P\left(H_{0}\right)=0.9987$

$>\sigma_{b} \ll \sigma_{\beta}$
$\Rightarrow P\left(H_{0} \mid \hat{\beta}\right) \approx p$
\Rightarrow precise a-posteri
information changes much.
$>\sigma_{b} \gg \sigma_{\beta}$
$\Rightarrow P\left(H_{0} \mid \hat{\beta}\right) \approx P\left(H_{0}\right)$
\Rightarrow fuzzy a-posteri data essentially give no information \Rightarrow a-priori probability nearly unchanged.

Bayesian inference for a Gaussian prior distribution 3: $P\left(H_{0}\right)=0.16$

Again, new data with $\sigma_{b} \ll \sigma_{\beta}$ gives much a-posteriori information (at least if p is significantly different from $P\left(H_{0}\right)$),

Bayesian inference for a Gaussian prior distribution 3: $P\left(H_{0}\right)=0.16$

Again, new data with $\sigma_{b} \ll \sigma_{\beta}$ gives much a-posteriori information (at least if p is significantly different from $P\left(H_{0}\right)$),

New data with $\sigma_{b} \gg$ σ_{β} are tantamount to essentially no new information.

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
measurement matters

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:

。

> The p value only gives a good estimate for the posterior probability
> the measuring uncertainty is much smaller than the prior standard
> deviation, (iii) we have an interval null hypothesis

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
- The p value only gives a good estimate for the posterior probability $P\left(H_{0} \mid B\right)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis

5.6 Conclusion

- For discrete variables and measurements, we have the simple Bayes's calculations from elementary statistics \rightarrow probability tree
- Discrete variables and continuous measurements:
- If the measuring uncertainty is larger than the distance between possible discrete true values, then the a-priori probability matters
- If the uncertainty is much smaller, then the closest distance to the measurement matters
- The p value is completely mislading, even for bimodal continuous variables (vehicle not exactly in the middle of the right lane)
- Continuous variables and measurements:
- The p value only gives a good estimate for the posterior probability $P\left(H_{0} \mid B\right)$ if (i) the prior distribution is unimodal, (ii) the measuring uncertainty is much smaller than the prior standard deviation, (iii) we have an interval null hypothesis
- If the measuring uncertainty is much larger than the prior spread, the measurement hardly changes $P\left(H_{0}\right)$

