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5.1 Introduction: Frequentist vs. Bayesian inference

I The classic frequentist’s approach calculates the probability that
the test function T is further away from H0, (in the extreme
range Edata) than the data realisation provided H0 is marginally
true:

p = P (T ∈ Edata|H∗0 ) ≥ P (T ∈ Edata|H0)

I The Bayesian inference tries to caculate what is actually
interesting: The probability of H0 given the data.

I If the unconditional or a-priori probabilities were known, this is
easy using Bayes’ theorem (abbreviating T ∈ Edata as Edata)

P (H0|Edata) =
P (Edata|H0)P (H0)

P (Edata)
≤ p P (H0)

P (Edata)

I For real-valued parameters, this obviously makes only sense for
interval null hypotheses since, for a point null hypothesis, we
have exactly P (H0|Edata) = P (H0) = 0.
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5.2 General Idea

I Principle: Update the a-priori probability P (H0) of some event
H0 (in particular, a null hypothesis) based on an observation B,
e.g., B : β̂ = b or B : β̂ ∈ [b− δ/2, b+ δ/2] with some small δ

I Example: H0: “tomorrow is nice weather”
I P (H0): a-priori probability before hearing the weather forecast (or

the general probability based on climate tables)
I B: tomorrow’s weather forecast B ∈ {will be nice, not nice}
I P (H0|B): a-posteriori probability after hearing the forecast

I Relation to classical frequentist’s statistics: Known are some
observation B and conditional probability P (B|H0) that often
can be expressed in terms of p. Want P (H0|B)

I Four scaling possibilities

(i) discrete β and β̂ (e.g., Covid-19 test)

(ii) discrete β and continuous β̂ (e.g., map-matching)
(iii) continuous β, discrete observation (H0 rejected or not)

(iv) continuous sought-after quantity β and continuous observation β̂
(e.g., regression models)
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5.3 Bayesian Inference
for Discrete Quantities and Observations

Textbook case: binary variables ∈ {“true”, “false”} (generalisations easy):

H0 : β = true, H̄0 : β = false, B : β̂ = true; B̄ : β̂ = false

P (H0|B) =
P (B|H0)P (H0)

P (B)

Example: Covid-19 tests
I H0: person is infected; B: person is tested positive

I Known:

• Sensitivity P (B|H0) = 95 % P (B̄|H0) = 5 %

• Specificity P (B̄|H̄0) = 97 %, P (B|H̄0) = 3 %

• Incidence P (H0) = 5 %

I Bayes:

• Test incidence: P (B) = P (B|H0)P (H0) + P (B|H̄0)P (H̄0) = 7.6 %

• H0 after test positive: P (H0|B) = P (B|H0)P (H0) /P (B) = 62.5 %

• H0 after test negative: P (H0|B̄) = P (B̄|H0)P (H0) /P (B̄) = 0.27 %
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5.4 Bayesian Inference
for Discrete Quantities and Continuous Observations

I Discrete quantity/parameter β with the prior distribution
P (β = βj) = pj ,

∑
j pj = 1

I Continuous measurement β̂ with a given distribution of density
g(β̂ | β = βj) = f(β̂ − βj)
? What is the meaning of f(.)? ! density of estimation error

I Assume H0 : β = βj0 with βj0 ∈ {βj} and the observation B:

β̂ ∈ [b− δ/2, b+ δ/2] with arbitrarily small δ:

I Bayes: P (H0) = pj0 , P (B|H0) = δf(b− βj0), and
P (B) = δ

∑
j pjf(b− βj)

⇒ P (H0|β̂ = b) =
P (H0)P (B|H0)

P (B)
=

pj0f(b− βj0)∑
j pjf(b− βj)
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Example: Map matching

p(H0) = density freeway
density freeway+density road = 0.8 P (H0|ŷ = b) = 0.8f(b)

0.8f(b)+0.2f(b−d)

ŷ ∼ N(y, σ2)
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Map matching II

True vehicle position:

y=

{
0 freeway
d=50 m parallel road

Lateral GPS measurement:

ŷ ∼
{
N(0, σ2) freeway
N(d, σ2) road

Measured:
ŷ = 30 m, σ = 10 m

Read from graphics:
σ
d

= 0.2, ŷ
d

= 0.6
⇒ P (H0|ŷ) = 0.23

⇒ you are on the parallel
road with a probability of 77 %
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5.5 Bayesian Inference
for Continuous Quantities and Measurements

I The quantity β has the a-priori distribution density h(β)

I Unlike discrete quantities/parameters, H0 needs to be an interval
instead of a point (why?) ⇒ P (H0) and P (B|H0) are integrals over
the values of H0

Relation of Bayesian inference to the p-value and the power function
Probability for H0 based on measurements lying in the extreme region of a
given measurement (B = Edata):

P (H0|Edata) =
P (Edata|H0)P (H0)

P (Edata)

P (H0)→
∫
β∈H0

h(β) d( β)

=

∫
β∈H0

P (Edata|β)h(β) dβ∫
β∈IR P (Edata|β)h(β) dβ

P (Edata|β) is related to the p-value P (Edata|β0 ∈ H∗0 ) and also to the power

function πα(β) = P (Rα|β) [Rα= rejection region at α]
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Inference for a given measurement

Probability for H0 based on a given realisation (measurement)

β̂ ∈ B = [b− δ/2, b+ δ/2] with arbitrarily small δ:

I β has the a-priori distribution density h(β)

I The estimation error β̂ − β is independent from β (as in the OLS

estimator under Gauß-Markow conditions), so β̂ has the conditional
density g(b|β) = f(b− β)

P (H0|B) =
P (B|H0)P (H0)

P (B)

P (H0)→
∫
h(β) d( β)

=

∫
β∈H0

δ g(b|β)h(β) dβ∫
β∈IR δ g(b|β)h(β) dβ

⇒ P (H0|B) =

∫
β∈H0

f(b− β)h(β) dβ∫
β∈IR f(b− β)h(β) dβ

Notice that the denominator is just the convolution [f ∗ h] at β̂ = b
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Example: Gaussian Prior Distribution and Observations

I Prior β ∼ N(0, σ2
β) (maximum ignorance), so β/σβ ∼ N(0, 1)

I Unbiased estimator β̂ ∼ N(β, σ2
b ), so (b− β)/σβ ∼ N(0, 1)

I Null hypothesis H0: β ≤ β0, so
∫
H0

dβ =
∫ β0

−∞ dβ

I Bayesian inference for H0 under the observation β̂ = b (long calc.):

P (H0|β̂) = Φ

(
β0 − µ
σ

)
, µ = b

σ2
β

σ2
β + σ2

b

, σ =
σβσb√
σ2
β + σ2

b

I When expressing the observation in terms of the p value,
b = β0 + σbΦ

−1(1− p) and β0 in terms of P (H0),
β0 = σβΦ−1(P (H0)) (derive!), this result is valid for any simple
intervall null hypothesis for a single parameter β, any a-priori
expectation E(β), and any H0 boundary value β0

I If σ2
b � σ2

β and H0 is an interval, we have P (H0|β̂)→ p
⇒ “ressurrection” of the p-value!
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Questions

? Show that, on the previous slide, b = β0 + σbΦ
−1(1− p)

! We assume known variance, so T = (β̂ − β0)/σb ∼ N(0, 1). For H0: β ≤ β0 we
have

p = 1− Φ(tdata)

= 1− Φ

(
b− β0
σb

)
Φ

(
b− β0
σb

)
= 1− p

b− β0
σb

= Φ−1(1− p)

b = β0 + σbΦ
−1(1− p)

? Show that, on the previous slide, β0 = σβΦ−1(P (H0))

! We have P (H0) = P (β ≤ β0) = Φ
(
β0
σβ

)
, so Φ−1(P (H0)) = β0/σβ .
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Questions II

? Show that, if the variance of the prior distribution is much larger than
that of the measurement, we have P (H0|β̂)→ p and, if it is much

smaller, we have P (H0|β̂)→ P (H0)

! Answer to the first question, σβ � σb:

we have
µ = b

σ2
β

σ2
β + σ2

b

= b
1

1 +
σ2
b

σ2
β

→ b,

σ = σβσb/
√
σ2
β + σ2

b = σb

√
1 + σ2

b/σ
2
β → σb ,

P (H0|β̂) → Φ

(
β0 − b
σb

)
β0 − b in terms of p

= Φ

(
−σbΦ−1(1− p)

σb

)
= Φ

(
−Φ−1(1− p)

) symm
= Φ

(
+Φ−1(p)

) def quantile
= p

! Answer to the second question, σβ � σb:

we have µ→ 0, σ → σβ , P (H0|β̂) = Φ(β/σβ) = P (H0)
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Bayesian inference for a Gaussian prior distribution 1:
P (H0) = 0.5

Example: Bike modal split β

I Past investigation:
β = (20± 3) %

I New investigation:
β̂ = (26± 3) %

Has biking increased?

I Frequentist:
H0 : β < 20 %,
p = Φ(−2) = 0.0227

I Bayesian:
σβ = σb = 3 %,
p = 0.0227, P (H0) = 0.5
read from graphics:
P (H0|β̂) = 8 % ⇒ no!
(a difference test would
give the same)
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Bayesian inference for a Gaussian prior distribution 2:
P (H0) = 0.9987

I σb � σβ
⇒ P (H0|β̂) ≈ p
⇒ precise a-posteri
information changes
much.

I σb � σβ
⇒ P (H0|β̂) ≈ P (H0)
⇒ fuzzy a-posteri data
essentially give no
information ⇒ a-priori
probability nearly
unchanged.
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Bayesian inference for a Gaussian prior distribution 3:
P (H0) = 0.16

Again, new data with
σb � σβ gives much
a-posteriori information
(at least if p is sig-
nificantly different from
P (H0)),

New data with σb �
σβ are tantamount to
essentially no new infor-
mation.
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5.6 Conclusion

I For discrete variables and measurements, we have the simple
Bayes’s calculations from elementary statistics → probability tree

I Discrete variables and continuous measurements:

• If the measuring uncertainty is larger than the distance between
possible discrete true values, then the a-priori probability matters

• If the uncertainty is much smaller, then the closest distance to the
measurement matters

• The p value is completely mislading, even for bimodal continuous
variables (vehicle not exactly in the middle of the right lane)

I Continuous variables and measurements:

• The p value only gives a good estimate for the posterior
probability P (H0|B) if (i) the prior distribution is unimodal, (ii)
the measuring uncertainty is much smaller than the prior standard
deviation, (iii) we have an interval null hypothesis

• If the measuring uncertainty is much larger than the prior spread,
the measurement hardly changes P (H0)
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