Lecture 04: Classical Inferential Statistics H: Significance Tests

4 Significance Tests
4.1 General Four-Step Procedure
4.1.1 Step 1: Chosing H_{0} : Type I and II errors
4.1.2 Steps 2 and 3: Test statistics
4.1.3 Steps 4: Decision
4.1.4 Step 4a: The p-value
4.2 Dependence on the True Parameter Value: Power Function
4.3 Model Selection Strategies
4.4 Logistic Regression

4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}

4. Significance Tests

4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin H_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

4. Significance Tests

4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin H_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

[^0]
4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin \boldsymbol{H}_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

[^1]
4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin \boldsymbol{H}_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)
What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation
- which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_{0} but more often if $H_{1}=\overline{H_{0}}$

4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin H_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown?

Test function in units of the estimated standard deviation

- which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_{0} but more often if $H_{1}=\overline{H_{0}}$

3. Evaluate a realisation $t_{\text {data }}$ of T from the data probability or significance level α. Otherwise, nothing can be said

4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin H_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown?

Test function in units of the estimated standard deviation

- which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_{0} but more often if $H_{1}=\overline{H_{0}}$

3. Evaluate a realisation $t_{\text {data }}$ of T from the data
4. Check if $t_{\text {data }} \in R(\alpha)$. If yes, H_{0} can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H_{0} : "mask useless").
Alternatively, calculate the p-value as the minimum α at which H_{0} can be rejected.

4. Significance Tests 4.1 General Four-Step Procedure

1. Formulate a null hypothesis \boldsymbol{H}_{0} such that their rejection gives insight, e.g. $\beta_{j}=\beta_{j 0}$ (point hypothesis) or $\beta_{j} \leq \beta_{0}$ (interval hypothesis): Notice: One cannot confirm H_{0}
2. Select a test function or statistics T

- whose distribution is known provided the parameters are at the margin H_{0}^{*} of the null hypothesis (of course, $H_{0}^{*}=H_{0}$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown?

Test function in units of the estimated standard deviation

- which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_{0} but more often if $H_{1}=\overline{H_{0}}$

3. Evaluate a realisation $t_{\text {data }}$ of T from the data
4. Check if $t_{\text {data }} \in R(\alpha)$. If yes, H_{0} can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H_{0} : "mask useless").
4a Alternatively, calculate the p-value as the minimum α at which H_{0} can be rejected.

4.1.1 Step 1: Choosing H_{0} : Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting.

4.1.1 Step 1: Choosing H_{0} : Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result

4.1.1 Step 1: Choosing H_{0} : Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the type I or α-error probability $P\left(H_{0}\right.$ rejected $\left.\mid H_{0}\right) \leq \alpha$ in significance tests

4.1.1 Step 1: Choosing H_{0} : Type I and II errors

H_{0} not rejected		H_{0} rejected
		Type I error
H_{0} is true		

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the type I or α-error probability $P\left(H_{0}\right.$ rejected $\left.\mid H_{0}\right) \leq \alpha$ in significance tests
- Since the type II or $\boldsymbol{\beta}$-error probability $P\left(H_{0}\right.$ not rejected $\left.\mid \overline{H_{0}}\right)$ is unknown, the more serious error type should be the α error

4.1.1 Step 1: Choosing H_{0} : Type I and II errors

H_{0} not rejected		H_{0} rejected
H_{0} is true		Type I error
H_{0} is not true	Type II error	

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the type I or α-error probability $P\left(H_{0}\right.$ rejected $\left.\mid H_{0}\right) \leq \alpha$ in significance tests
- Since the type II or $\boldsymbol{\beta}$-error probability $P\left(H_{0}\right.$ not rejected $\left.\mid \overline{H_{0}}\right)$ is unknown, the more serious error type should be the α error

Fundamental problem: I want $P\left(H_{0} \mid\right.$ rejected $)$ and $P\left(H_{0} \mid \overline{\text { rejected }}\right)$ - while I get control over $P\left(\right.$ rejected $\left.\mid H_{0}\right) \leq P\left(\right.$ rejected $\left.\mid H_{0}^{*}\right) \Rightarrow$ Bayesian statistics

4.1.2 Steps 2 and 3: Test statistics I

- (i) Testing parameters such as $H_{0}: \beta_{j}=\beta_{j 0}$ or $\beta_{j} \geq \beta_{j 0}$ or $\beta_{j} \leq \beta_{j 0}$: The test function is the estimated deviation from H_{0}^{*} in units of the estimated error standard deviation. It is student-t distributed with \#dataPoints- \#parameters degrees of freedom (df):

$$
T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}} \sim T(n-1-J)
$$

(ii) Testing functions of parameters such as $H_{0}: \beta_{1} / \beta_{2}=2, \leq 2$ or
≥ 2 : Transform into a linear combination. Then, the normalized estimated deviation is student-t distributed under H_{0}^{*}. Here, at H_{0}^{*}, the linear combination is $b=\beta_{1}-2 \beta_{2}=0$:

4.1.2 Steps 2 and 3: Test statistics I

- (i) Testing parameters such as $H_{0}: \beta_{j}=\beta_{j 0}$ or $\beta_{j} \geq \beta_{j 0}$ or $\beta_{j} \leq \beta_{j 0}$: The test function is the estimated deviation from H_{0}^{*} in units of the estimated error standard deviation. It is student-t distributed with \#dataPoints- \#parameters degrees of freedom (df):

$$
T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}} \sim T(n-1-J)
$$

- (ii) Testing functions of parameters such as $H_{0}: \beta_{1} / \beta_{2}=2, \leq 2$ or ≥ 2 : Transform into a linear combination. Then, the normalized estimated deviation is student-t distributed under H_{0}^{*}. Here, at H_{0}^{*}, the linear combination is $b=\beta_{1}-2 \beta_{2}=0$:

$$
\begin{aligned}
\hat{b} & =\hat{\beta}_{1}-2 \hat{\beta}_{2}, \\
\hat{V}(\hat{b}) & =\hat{V}_{11}+4 \hat{V}_{22}-4 \hat{V}_{12}, \\
T & =\frac{\hat{b}}{\sqrt{\hat{V}(\hat{b})}} \sim T(n-1-J)
\end{aligned}
$$

Test statistics II

- (iii) Testing the correlation coefficient in an $x y$ scatter plot:

$$
\hat{\rho}=\frac{s_{x y}}{s_{x} s_{y}}, \quad H_{0}: \rho=0, \quad T=\frac{\hat{\rho}}{\sqrt{1-\hat{\rho}^{2}}} \sqrt{n-2} \sim T(n-2)
$$

Test statistics II

- (iii) Testing the correlation coefficient in an $x y$ scatter plot:

$$
\hat{\rho}=\frac{s_{x y}}{s_{x} s_{y}}, \quad H_{0}: \rho=0, \quad T=\frac{\hat{\rho}}{\sqrt{1-\hat{\rho}^{2}}} \sqrt{n-2} \sim T(n-2)
$$

Derivation: $\rho=0 \mathrm{if}$, and only if, in a simple linear regression $y=\beta_{0}+\beta_{1} x+\epsilon$, the slope parameter $\beta_{1}=0$, so test for $\beta_{1}=0$: Under H_{0}, the test statistics

$$
T=\hat{\beta}_{1} / \sqrt{\hat{V}_{11}}=\frac{s_{x y}}{\hat{\sigma} s_{x}} \sqrt{n} \sim T(n-2)
$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^{2}=n\left(s_{y}^{2}-s_{x y}^{2} / s_{x}^{2}\right) /(n-2)$
(iv) Test for the residual variance, $H_{0}: \sigma^{2}=\sigma_{0}^{2}, \sigma^{2} \geq \sigma_{0}^{2}$, and $\sigma^{2} \leq \sigma_{0}^{2}$:

The one-parameter chi-squared distribution with m degrees of freedom $\chi^{2}(m)=\sum_{i=1}^{m} Z_{i}^{2}$ is the sum of squares of i.i.d. Gaussians. Its density is not

Test statistics II

- (iii) Testing the correlation coefficient in an $x y$ scatter plot:

$$
\hat{\rho}=\frac{s_{x y}}{s_{x} s_{y}}, \quad H_{0}: \rho=0, \quad T=\frac{\hat{\rho}}{\sqrt{1-\hat{\rho}^{2}}} \sqrt{n-2} \sim T(n-2)
$$

Derivation: $\rho=0 \mathrm{if}$, and only if, in a simple linear regression $y=\beta_{0}+\beta_{1} x+\epsilon$, the slope parameter $\beta_{1}=0$, so test for $\beta_{1}=0$: Under H_{0}, the test statistics

$$
T=\hat{\beta}_{1} / \sqrt{\hat{V}_{11}}=\frac{s_{x y}}{\hat{\sigma} s_{x}} \sqrt{n} \sim T(n-2)
$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^{2}=n\left(s_{y}^{2}-s_{x y}^{2} / s_{x}^{2}\right) /(n-2)$

- (iv) Test for the residual variance, $H_{0}: \sigma^{2}=\sigma_{0}^{2}, \sigma^{2} \geq \sigma_{0}^{2}$, and $\sigma^{2} \leq \sigma_{0}^{2}$:

$$
T=\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}(n-1-J) \sim \chi^{2}(n-1-J)
$$

The one-parameter chi-squared distribution with m degrees of freedom $\chi^{2}(m)=\sum_{i=1}^{m} Z_{i}^{2}$ is the sum of squares of i.i.d. Gaussians. Its density is not symmetric, so we need to calculate both the α and $1-\alpha$ quantiles

Test statistics III

- (v) Tests of simultaneous point null hypotheses, e.g., $H_{0}:\left(\beta_{1}=0\right)$ AND ($\beta_{2}=2$) using the Fisher-F test:

$$
T=\frac{\left(S_{0}-S\right) /\left(M-M_{0}\right)}{S /(n-M)} \sim F\left(M-M_{0}, n-M\right)
$$

Test statistics III

- (v) Tests of simultaneous point null hypotheses, e.g., $H_{0}:\left(\beta_{1}=0\right)$ AND ($\beta_{2}=2$) using the Fisher-F test:

$$
T=\frac{\left(S_{0}-S\right) /\left(M-M_{0}\right)}{S /(n-M)} \sim F\left(M-M_{0}, n-M\right)
$$

- S : SSE of the estimated full model with $M=J+1$ parameters parameters
* The Fisher-F distribution is essentially the ratio of two independent distributed random variables,

Test statistics III

- (v) Tests of simultaneous point null hypotheses, e.g., $H_{0}:\left(\beta_{1}=0\right)$ AND ($\beta_{2}=2$) using the Fisher-F test:

$$
T=\frac{\left(S_{0}-S\right) /\left(M-M_{0}\right)}{S /(n-M)} \sim F\left(M-M_{0}, n-M\right)
$$

- S : SSE of the estimated full model with $M=J+1$ parameters
- S_{0} : SSE of the estimated restrained model under H_{0} with M_{0} free parameters
$>$ The Fisher-F distribution is essentially the ratio of two independent λ distributed random variables,

Test statistics III

- (v) Tests of simultaneous point null hypotheses, e.g., $H_{0}:\left(\beta_{1}=0\right)$ AND ($\beta_{2}=2$) using the Fisher-F test:

$$
T=\frac{\left(S_{0}-S\right) /\left(M-M_{0}\right)}{S /(n-M)} \sim F\left(M-M_{0}, n-M\right)
$$

- S : SSE of the estimated full model with $M=J+1$ parameters
- S_{0} : SSE of the estimated restrained model under H_{0} with M_{0} free parameters
- The Fisher-F distribution is essentially the ratio of two independent χ^{2} distributed random variables,

$$
F(n, d)=\frac{\chi_{n}^{2} / n}{\chi_{d}^{2} / d}
$$

with n numerator and d denominator degrees of freedom
Argue that always $S_{0} \geq S$

Test statistics III

- (v) Tests of simultaneous point null hypotheses, e.g., $H_{0}:\left(\beta_{1}=0\right)$ AND ($\beta_{2}=2$) using the Fisher-F test:

$$
T=\frac{\left(S_{0}-S\right) /\left(M-M_{0}\right)}{S /(n-M)} \sim F\left(M-M_{0}, n-M\right)
$$

- S : SSE of the estimated full model with $M=J+1$ parameters
- S_{0} : SSE of the estimated restrained model under H_{0} with M_{0} free parameters
- The Fisher-F distribution is essentially the ratio of two independent χ^{2} distributed random variables,

$$
F(n, d)=\frac{\chi_{n}^{2} / n}{\chi_{d}^{2} / d}
$$

with n numerator and d denominator degrees of freedom
? Argue that always $S_{0} \geq S$

Equivalence of the F and T-tests for one parameter

With $M-M_{0}=1$, the F-test is equivalent to a parameter test for the parameter j in question:

- Parameter test: $T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}\left(\hat{\beta}_{j}\right)}} \sim T(n-1-J)$
- F-test: $T=(n-J-1) \frac{S_{0}-S}{S} \sim F(1, n-1-J)$

Equivalence of the F and T-tests for one parameter

With $M-M_{0}=1$, the F-test is equivalent to a parameter test for the parameter j in question:

- Parameter test: $T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}\left(\hat{\beta}_{j}\right)}} \sim T(n-1-J)$
- F-test: $T=(n-J-1) \frac{S_{0}-S}{S} \sim F(1, n-1-J)$
? Regarding the rhs., show following general relation between the student-t and the F(1,d) distributions: $F \sim F(1, d)$ and $T \sim T(d) \Rightarrow F=T^{2}$

Equivalence of the F and T-tests for one parameter

With $M-M_{0}=1$, the F-test is equivalent to a parameter test for the parameter j in question:

- Parameter test: $T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}\left(\hat{\beta}_{j}\right)}} \sim T(n-1-J)$
- F-test: $T=(n-J-1) \frac{S_{0}-S}{S} \sim F(1, n-1-J)$
? Regarding the rhs., show following general relation between the student-t and the F $(1, \mathrm{~d})$ distributions: $F \sim F(1, d)$ and $T \sim T(d) \Rightarrow F=T^{2}$
! By definition, Fisher's F is a ratio of χ^{2} distributions. Furthermore, squares of standardnormal random variables Z are χ_{1}^{2} distributed:

$$
F(1, d)=\chi_{1}^{2} /\left(\chi_{d}^{2} / d\right)=Z^{2} /\left(\chi_{d}^{2} / d\right)
$$

where $Z \sim N(0,1)$ and χ_{d}^{2} and Z are independent from each other. The definition of the student-t distribution is $T(d)=Z / \sqrt{\chi_{d}^{2} / d}$, so $F(1, d)=T_{d}^{2}$.
\rightarrow One can show (difficult!) that following is exactly valid for the lhs.

Equivalence of the F and T-tests for one parameter

With $M-M_{0}=1$, the F-test is equivalent to a parameter test for the parameter j in question:

- Parameter test: $T=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}\left(\hat{\beta}_{j}\right)}} \sim T(n-1-J)$
- F-test: $T=(n-J-1) \frac{S_{0}-S}{S} \sim F(1, n-1-J)$
? Regarding the rhs., show following general relation between the student-t and the F $(1, \mathrm{~d})$ distributions: $F \sim F(1, d)$ and $T \sim T(d) \Rightarrow F=T^{2}$
! By definition, Fisher's F is a ratio of χ^{2} distributions. Furthermore, squares of standardnormal random variables Z are χ_{1}^{2} distributed:

$$
F(1, d)=\chi_{1}^{2} /\left(\chi_{d}^{2} / d\right)=Z^{2} /\left(\chi_{d}^{2} / d\right)
$$

where $Z \sim N(0,1)$ and χ_{d}^{2} and Z are independent from each other. The definition of the student-t distribution is $T(d)=Z / \sqrt{\chi_{d}^{2} / d}$, so $F(1, d)=T_{d}^{2}$.

- One can show (difficult!) that following is exactly valid for the lhs.:

$$
(n-J-1) \frac{S_{0}-S}{S}=\frac{\left(\hat{\beta}_{j}-\beta_{j 0}\right)^{2}}{\hat{V}\left(\hat{\beta}_{j}\right)}=\frac{\left(\hat{\beta}_{j}-\beta_{j 0}\right)^{2}}{\hat{V}_{j j}}
$$

where S_{0} is the (minimum) SSE for the calibrated restrained model

4.1.3 Step 4: Decision

- The decision is based on the rejection region:

The rejection region $R^{\left(H_{0}\right)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_{0}^{*}, are most distant from H_{0}

- Decision

4.1.3 Step 4: Decision

- The decision is based on the rejection region:

The rejection region $R^{\left(H_{0}\right)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_{0}^{*}, are most distant from H_{0}

- Decision:
H_{0} is rejected at significance level α if $t_{\text {data }} \in R^{\left(H_{0}\right)}(\alpha)$
A good test statistics allows for a clear definition of what is meant by "distance to H_{0} " and brings, for a given α, the boundary of the rejection region as close to H_{0}^{*} as possible
\qquad
comparison operators

4.1.3 Step 4: Decision

- The decision is based on the rejection region:

The rejection region $R^{\left(H_{0}\right)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_{0}^{*}, are most distant from H_{0}

- Decision:
H_{0} is rejected at significance level α if $t_{\text {data }} \in R^{\left(H_{0}\right)}(\alpha)$
- A good test statistics allows for a clear definition of what is meant by "distance to H_{0} " and brings, for a given α, the boundary of the rejection region as close to H_{0}^{*} as possible

In contrast to T and the realisation $t_{\text {data }}$ which only depends on
H_{0}^{*} and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators $=, \geq, \leq$

4.1.3 Step 4: Decision

- The decision is based on the rejection region:

The rejection region $R^{\left(H_{0}\right)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_{0}^{*}, are most distant from H_{0}

- Decision:
H_{0} is rejected at significance level α if $t_{\text {data }} \in R^{\left(H_{0}\right)}(\alpha)$
- A good test statistics allows for a clear definition of what is meant by "distance to H_{0} " and brings, for a given α, the boundary of the rejection region as close to H_{0}^{*} as possible
- In contrast to T and the realisation $t_{\text {data }}$ which only depends on H_{0}^{*} and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators $=, \geq, \leq$

1. Rejection region for H_{0} : " $<$ " or " \leq " (interval hypothesis)

$\rightarrow H_{0}$ is rejected on the level α if

1. Rejection region for H_{0} : " $<$ " or " \leq " (interval hypothesis)

- H_{0} is rejected on the level α if

$$
t_{\text {data }}>t_{1-\alpha}
$$

2. Rejection region for H_{0} : " $>$ " or " \geq " (interval hypothesis)

3. Rejection region for H_{0} : " $>$ " or " \geq " (interval hypothesis)

- H_{0} is rejected on the level α if

$$
t_{\text {data }}<t_{\alpha}=-t_{1-\alpha}
$$

\rightarrow The equality sign is only valid for symmetric test statistics
2. Rejection region for H_{0} : " $>$ " or " \geq " (interval hypothesis)

- H_{0} is rejected on the level α if

$$
t_{\text {data }}<t_{\alpha}=-t_{1-\alpha}
$$

- The equality sign is only valid for symmetric test statistics

3. Rejection region for H_{0} : "=" (point hypothesis)

- For symmetric test statistics, H_{0} is rejected on the level α if

$$
\left|t_{\text {data }}\right|>t_{1-\alpha / 2}
$$

\rightarrow If the distribution is not symmetric (as the χ^{2} distribution for the variance test), the definition of what is "most distant" is not unique. For simplicity, one assumes equal statistical weights to both sides:

3. Rejection region for H_{0} : "=" (point hypothesis)

- For symmetric test statistics, H_{0} is rejected on the level α if

$$
\left|t_{\text {data }}\right|>t_{1-\alpha / 2}
$$

- If the distribution is not symmetric (as the χ^{2} distribution for the variance test), the definition of what is "most distant" is not unique. For simplicity, one assumes equal statistical weights to both sides:

$$
\text { rejected } \Leftrightarrow\left(t_{\text {data }}<t_{\alpha / 2}\right) \cup\left(t_{\text {data }}>t_{1-\alpha / 2}\right)
$$

Example: modeling the demand for hotel rooms

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [\%]

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price $[€ /$ night],

$$
\hat{\beta}_{0}=25.5, \quad \hat{\beta}_{1}=38.2, \quad \hat{\beta}_{2}=-0.952
$$

and

$$
\hat{\mathbf{V}}=\left(\begin{array}{ccc}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{array}\right)
$$

Example: modeling the demand for hotel rooms

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [\%]

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price $[€ /$ night],

$$
\hat{\beta}_{0}=25.5, \quad \hat{\beta}_{1}=38.2, \quad \hat{\beta}_{2}=-0.952
$$

and

$$
\hat{\mathbf{V}}=\left(\begin{array}{ccc}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{array}\right)
$$

? Formulate and test the null hypothesis at $\alpha=5 \%$ that the stars do not matter

Example: modeling the demand for hotel rooms

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [\%]

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price $[€ /$ night],

$$
\hat{\beta}_{0}=25.5, \quad \hat{\beta}_{1}=38.2, \quad \hat{\beta}_{2}=-0.952
$$

and

$$
\hat{\mathbf{V}}=\left(\begin{array}{ccc}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{array}\right)
$$

? Formulate and test the null hypothesis at $\alpha=5 \%$ that the stars do not matter
! $\quad H_{01}: \beta_{1}=0$, point t-test with $T=\hat{\beta}_{1} / \sqrt{\hat{V}_{11}} \sim T(12-3)$, i.e. df $=9$ degrees of freedom, $t_{\text {data }}=7.49, t_{0.975}^{(9)}=2.26<\left|t_{\text {data }}\right| \Rightarrow H_{0}$ rejected, stars matter

Example: modeling the demand for hotel rooms

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [\%]

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price $[€ /$ night],

$$
\hat{\beta}_{0}=25.5, \quad \hat{\beta}_{1}=38.2, \quad \hat{\beta}_{2}=-0.952
$$

and

$$
\hat{\mathbf{v}}=\left(\begin{array}{ccc}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{array}\right)
$$

? Formulate and test the null hypothesis at $\alpha=5 \%$ that the stars do not matter
! $H_{01}: \beta_{1}=0$, point t-test with $T=\hat{\beta}_{1} / \sqrt{\hat{V}_{11}} \sim T(12-3)$, i.e. df $=9$ degrees of freedom, $t_{\text {data }}=7.49, t_{0.975}^{(9)}=2.26<\left|t_{\text {data }}\right| \Rightarrow H_{0}$ rejected, stars matter
? Do people favour more stars (at $\alpha=5 \%$)?

Example: modeling the demand for hotel rooms

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [\%]

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price $[€ /$ night],

$$
\hat{\beta}_{0}=25.5, \quad \hat{\beta}_{1}=38.2, \quad \hat{\beta}_{2}=-0.952
$$

and

$$
\hat{\mathbf{v}}=\left(\begin{array}{ccc}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{array}\right)
$$

? Formulate and test the null hypothesis at $\alpha=5 \%$ that the stars do not matter
! $H_{01}: \beta_{1}=0$, point t-test with $T=\hat{\beta}_{1} / \sqrt{\hat{V}_{11}} \sim T(12-3)$, i.e. df $=9$ degrees of freedom, $t_{\text {data }}=7.49, t_{0.975}^{(9)}=2.26<\left|t_{\text {data }}\right| \Rightarrow H_{0}$ rejected, stars matter
? Do people favour more stars (at $\alpha=5 \%$)?
! $H_{02}: \beta_{1}<=0$ (use as H_{0} what you want to reject!), interval test with same T and $t_{\text {data }}$ as above, $t_{0.95}^{(9)}=1.83<t_{\text {data }} \Rightarrow H_{02}$ rejected, more stars are better

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24 \stackrel{!}{>} t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24 \stackrel{!}{>} t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24 \stackrel{!}{>} t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?
! Again, define the complement event as $H_{04}: \beta_{1} \leq-30 \beta_{2}$ or $\gamma=\beta_{1}+30 \beta_{2} \leq 0$

$$
\begin{aligned}
\hat{\gamma} & =\hat{\beta}_{1}+30 \hat{\beta}_{2}=9.63 \\
\hat{V}(\hat{\gamma}) & =\hat{V}_{11}+900 \hat{V}_{22}+2 * 1 * 30 \hat{V}_{12}=5.27
\end{aligned}
$$

losing customers is less than 5%

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1\left(H_{03}\right.$ is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24 \stackrel{!}{>} t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?
! Again, define the complement event as $H_{04}: \beta_{1} \leq-30 \beta_{2}$ or $\gamma=\beta_{1}+30 \beta_{2} \leq 0$

$$
\begin{aligned}
\hat{\gamma} & =\hat{\beta}_{1}+30 \hat{\beta}_{2}=9.63, \\
\hat{V}(\hat{\gamma}) & =\hat{V}_{11}+900 \hat{V}_{22}+2 * 1 * 30 \hat{V}_{12}=5.27
\end{aligned}
$$

So, $t_{\text {data }}=\hat{\gamma} / \sqrt{\hat{V}(\hat{\gamma})}=4.20>t_{0.95}^{(9)}=1.83 \Rightarrow H_{04}$ rejected at $5 \% \Rightarrow$ the risk of losing customers is less than 5%

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24 \stackrel{!}{>} t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?
! Again, define the complement event as $H_{04}: \beta_{1} \leq-30 \beta_{2}$ or $\gamma=\beta_{1}+30 \beta_{2} \leq 0$

$$
\begin{aligned}
\hat{\gamma} & =\hat{\beta}_{1}+30 \hat{\beta}_{2}=9.63 \\
\hat{V}(\hat{\gamma}) & =\hat{V}_{11}+900 \hat{V}_{22}+2 * 1 * 30 \hat{V}_{12}=5.27
\end{aligned}
$$

So, $t_{\text {data }}=\hat{\gamma} / \sqrt{\hat{V}(\hat{\gamma})}=4.20>t_{0.95}^{(9)}=1.83 \Rightarrow H_{04}$ rejected at $5 \% \Rightarrow$ the risk of losing customers is less than 5%
? Can it be simultaneously true that $\beta_{1}=30$ and $\beta_{2}=-1$?
\qquad
\qquad

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24>t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?
! Again, define the complement event as $H_{04}: \beta_{1} \leq-30 \beta_{2}$ or $\gamma=\beta_{1}+30 \beta_{2} \leq 0$

$$
\begin{aligned}
\hat{\gamma} & =\hat{\beta}_{1}+30 \hat{\beta}_{2}=9.63 \\
\hat{V}(\hat{\gamma}) & =\hat{V}_{11}+900 \hat{V}_{22}+2 * 1 * 30 \hat{V}_{12}=5.27
\end{aligned}
$$

So, $t_{\text {data }}=\hat{\gamma} / \sqrt{\hat{V}(\hat{\gamma})}=4.20>t_{0.95}^{(9)}=1.83 \Rightarrow H_{04}$ rejected at $5 \% \Rightarrow$ the risk of losing customers is less than 5%
? Can it be simultaneously true that $\beta_{1}=30$ and $\beta_{2}=-1$?
! Full model: $\hat{\boldsymbol{\beta}}=(25.5,38.2,-0.952)^{\prime}, S(\hat{\boldsymbol{\beta}})=498.2$;
Reduced model with fixed $\beta_{1}=30, \beta_{2}=1$ leading to $\hat{\beta}_{0}=49.0$:
$\hat{\boldsymbol{\beta}}_{r}=(49.0,30,-1)^{\prime}, S_{0}=S\left(\hat{\boldsymbol{\beta}}_{r}\right)=1808$;

Example: modeling the demand for hotel rooms (ctned)

? Does each $€$ more per night decrease the occupancy by at most 1% ?
! $H_{03}: \beta_{2}<-1$ (H_{03} is the complement event!),
$t_{\text {data }}=\left(\hat{\beta}_{2}+1\right) / \sqrt{\hat{V}_{22}}=0.24>t_{0.95}^{(9)}=1.83 \Rightarrow H_{03}$ not rejected
\Rightarrow the hotel manager might risk losing more than one percent point of customers
? Is it worth renovating my hotel thereby gaining one star so that
I can ask for $30 €$ more per night without losing guests?
! Again, define the complement event as $H_{04}: \beta_{1} \leq-30 \beta_{2}$ or $\gamma=\beta_{1}+30 \beta_{2} \leq 0$

$$
\begin{aligned}
\hat{\gamma} & =\hat{\beta}_{1}+30 \hat{\beta}_{2}=9.63 \\
\hat{V}(\hat{\gamma}) & =\hat{V}_{11}+900 \hat{V}_{22}+2 * 1 * 30 \hat{V}_{12}=5.27
\end{aligned}
$$

So, $t_{\text {data }}=\hat{\gamma} / \sqrt{\hat{V}(\hat{\gamma})}=4.20>t_{0.95}^{(9)}=1.83 \Rightarrow H_{04}$ rejected at $5 \% \Rightarrow$ the risk of losing customers is less than 5%
? Can it be simultaneously true that $\beta_{1}=30$ and $\beta_{2}=-1$?
! Full model: $\hat{\boldsymbol{\beta}}=(25.5,38.2,-0.952)^{\prime}, S(\hat{\boldsymbol{\beta}})=498.2$;
Reduced model with fixed $\beta_{1}=30, \beta_{2}=1$ leading to $\hat{\beta}_{0}=49.0$:
$\hat{\boldsymbol{\beta}}_{r}=(49.0,30,-1)^{\prime}, S_{0}=S\left(\hat{\boldsymbol{\beta}}_{r}\right)=1808 ; M-M_{0}=2 \mathrm{df}, n-M=9 \mathrm{df}$,
$T \sim F(2,9), t_{\text {data }}=9 / 2\left(S_{0}-S\right) / S=11.8>f_{0.95}^{(2.9)}=4.26 \Rightarrow H_{0}$ rejected

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is) Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
\qquad are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:
where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\mathrm{data}} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\mathrm{data}} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$ Relation to the rejection region?

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\mathrm{data}} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$ Relation to the rejection region? p is defined such that $E_{\text {data }}=R(p)$

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\mathrm{data}} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$ Relation to the rejection region? p is defined such that $E_{\text {data }}=R(p)$

- $p \geq 5 \%$: not significant (no star at the value for β, sometimes a " + " if between 5% and 10%, e.g., $\beta_{1}=4.2^{+}$)

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\text {data }} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$ Relation to the rejection region? p is defined such that $E_{\text {data }}=R(p)$

- $p \geq 5 \%$: not significant (no star at the value for β, sometimes a
" + " if between 5% and 10%, e.g., $\beta_{1}=4.2^{+}$)
- $p<5 \%$: significant (one star, e.g., $\beta_{1}=4.2^{*}$)

4.1.4 The p-value

- Obviously, it is not very efficient to test H_{0} for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- The most general definition is:

$$
\left.p=\operatorname{Prob}\left(T \in E_{\mathrm{data}} \mid H_{0}^{*}\right)\right)
$$

where the extreme region $E_{\text {data }}$ contains all realisations of T that are further away from H_{0} than $t_{\text {data }}$. Hence, $t_{\text {data }}$ lies on the boundary of $E_{\text {data }}$ Relation to the rejection region? p is defined such that $E_{\text {data }}=R(p)$

- $p \geq 5 \%$: not significant (no star at the value for β, sometimes a
" + " if between 5% and 10%, e.g., $\beta_{1}=4.2^{+}$)
- $p<5 \%$: significant (one star, e.g., $\beta_{1}=4.2^{*}$)
- $p<1 \%$: very significant (two star, $\beta_{1}=4.2^{* *}$)
- $p<0.001$: highly significant (three stars, $\beta_{1}=4.2^{* * *}$)

Calculating p for some basic tests

- Interval test $H_{0}: \beta \leq \beta_{0}$ or $\beta<\beta_{0}$

$$
p=P\left(T>t_{\text {data }} \mid \beta=\beta_{0}\right)=1-F_{T}\left(t_{\text {data }}\right)
$$

- Interval test $H_{0}: \beta \geq \beta_{0}$ or $\beta>\beta_{0}$ $p=P\left(T<t_{\text {data }} \mid \beta=\beta_{0}\right)=F_{T}\left(t_{\text {data }}\right)$

Calculating p for some basic tests

- Interval test $H_{0}: \beta \leq \beta_{0}$ or $\beta<\beta_{0}$

$$
p=P\left(T>t_{\text {data }} \mid \beta=\beta_{0}\right)=1-F_{T}\left(t_{\text {data }}\right)
$$

- Interval test $H_{0}: \beta \geq \beta_{0}$ or $\beta>\beta_{0}$

$$
p=P\left(T<t_{\text {data }} \mid \beta=\beta_{0}\right)=F_{T}\left(t_{\text {data }}\right)
$$

 assumed at the $3^{\text {rd }}$ equality sign)
\square $=1-F_{T}\left(\left|t_{\text {data }}\right|\right)+1-F_{T}\left(\left|t_{\text {data }}\right|\right)$ $=2\left(1-F_{T}\left(\left|t_{\text {data }}\right|\right)\right)$

Calculating p for some basic tests

- Interval test $H_{0}: \beta \leq \beta_{0}$ or $\beta<\beta_{0}$

$$
p=P\left(T>t_{\mathrm{data}} \mid \beta=\beta_{0}\right)=1-F_{T}\left(t_{\mathrm{data}}\right)
$$

- Interval test $H_{0}: \beta \geq \beta_{0}$ or $\beta>\beta_{0}$

$$
p=P\left(T<t_{\text {data }} \mid \beta=\beta_{0}\right)=F_{T}\left(t_{\text {data }}\right)
$$

- Point test $H_{0}: \beta=\beta_{0}$ (symmetry of f_{T}
 assumed at the $3^{\text {rd }}$ equality sign)

$$
\begin{aligned}
p & =P\left(\left(T>\left|t_{\text {data }}\right|\right) \cup\left(T<-\left|t_{\text {data }}\right|\right)\right) \\
& =\left(1-F_{T}\left(\left|t_{\text {data }}\right|\right)\right)+F_{T}\left(-\left|t_{\text {data }}\right|\right) \\
& =1-F_{T}\left(\left|t_{\text {data }}\right|\right)+1-F_{T}\left(\left|t_{\text {data }}\right|\right) \\
& =2\left(1-F_{T}\left(\left|t_{\text {data }}\right|\right)\right)
\end{aligned}
$$

p-values for the null hypotheses of the hotel example

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price

- H_{01} "stars do not matter": point hypothesis $\beta_{1}=0$ $t_{\text {data }}=7.49, p=2\left(1-F_{T}^{(9)}\right)\left(\left|t_{\text {data }}\right|\right)=3.7 E-5^{* * *}$

p-values for the null hypotheses of the hotel example

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price

- H_{01} "stars do not matter": point hypothesis $\beta_{1}=0$ $t_{\text {data }}=7.49, p=2\left(1-F_{T}^{(9)}\right)\left(\left|t_{\text {data }}\right|\right)=3.7 E-5^{* * *}$
- H_{02} "more stars are better": interval hypothesis $\beta_{1}<0$ $t_{\text {data }}=7.49, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=1.9 E-5^{* * *}$

p-values for the null hypotheses of the hotel example

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [$\#$ stars]; x_{2} : price

- H_{01} "stars do not matter": point hypothesis $\beta_{1}=0$ $t_{\text {data }}=7.49, p=2\left(1-F_{T}^{(9)}\right)\left(\left|t_{\text {data }}\right|\right)=3.7 E-5^{* * *}$
- H_{02} "more stars are better": interval hypothesis $\beta_{1}<0$ $t_{\text {data }}=7.49, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=1.9 E-5^{* * *}$
- H_{03} " Δ occupancy $\leq-1 \%$ per addtl $€$ ": interval hypothesis $\beta_{2}<-1$ $t_{\text {data }}=0.24, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=40 \%$
- H_{04} One star more is worth less than $30 €$ " function interval hypothesis $\gamma=\beta_{1}+30 \beta_{2}<0$ compound point hypothesis $\left(\beta_{1}=30\right) \cap\left(\beta_{2}=-1\right)$

p-values for the null hypotheses of the hotel example

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price

- H_{01} "stars do not matter": point hypothesis $\beta_{1}=0$ $t_{\text {data }}=7.49, p=2\left(1-F_{T}^{(9)}\right)\left(\left|t_{\text {data }}\right|\right)=3.7 E-5^{* * *}$
- H_{02} "more stars are better": interval hypothesis $\beta_{1}<0$ $t_{\text {data }}=7.49, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=1.9 E-5^{* * *}$
- H_{03} " Δ occupancy $\leq-1 \%$ per addtl $€$ ": interval hypothesis $\beta_{2}<-1$ $t_{\text {data }}=0.24, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=40 \%$
- H_{04} One star more is worth less than $30 €$ ":
function interval hypothesis $\gamma=\beta_{1}+30 \beta_{2}<0$
$t_{\text {data }}=4.20, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=0.12 \%^{* *}$
- H_{05} "star and price sensitivity simultaneously given'
compound point hypothesis $\left(\beta_{1}=30\right) \cap\left(\beta_{2}=-1\right)$

p-values for the null hypotheses of the hotel example

$$
y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price

- H_{01} "stars do not matter": point hypothesis $\beta_{1}=0$ $t_{\text {data }}=7.49, p=2\left(1-F_{T}^{(9)}\right)\left(\left|t_{\text {data }}\right|\right)=3.7 E-5^{* * *}$
- H_{02} "more stars are better": interval hypothesis $\beta_{1}<0$ $t_{\text {data }}=7.49, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=1.9 E-5^{* * *}$
- H_{03} " Δ occupancy $\leq-1 \%$ per addtl $€$ ": interval hypothesis $\beta_{2}<-1$ $t_{\text {data }}=0.24, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=40 \%$
- H_{04} One star more is worth less than $30 €$ ": function interval hypothesis $\gamma=\beta_{1}+30 \beta_{2}<0$ $t_{\text {data }}=4.20, p=1-F_{T}^{(9)}\left(t_{\text {data }}\right)=0.12 \%^{* *}$
- H_{05} "star and price sensitivity simultaneously given": compound point hypothesis $\left(\beta_{1}=30\right) \cap\left(\beta_{2}=-1\right)$ $t_{\text {data }}=11.8, p=1-F_{F}^{(2,9)}\left(t_{\text {data }}\right)=0.30 \%^{* *}$

Visualization

\Rightarrow Turquoise lines: boundaries of the $\alpha=5 \%-\mathrm{Cls}$ of β_{1} and β_{2}
\rightarrow Black line: boundary of simple interval null hypothesis $H_{03}: \beta_{2} \leq-1$ (t-test)

Visualization

- Turquoise lines: boundaries of the $\alpha=5 \%$-CIs of β_{1} and β_{2}
\Rightarrow Black line: boundary of simple interval null hypothesis H_{03} : $\beta_{2} \leq-1$ (t-test)
\rightarrow Red boxes: boundary of the function intervall hypothesis H_{0}

Visualization

- Turquoise lines: boundaries of the $\alpha=5 \%-\mathrm{Cls}$ of β_{1} and β_{2}
- Black line: boundary of simple interval null hypothesis $H_{03}: \beta_{2} \leq-1$ (t-test) (t-test)
- Black symbols: simultaneous point hypotheses (F-test)

Visualization

- Turquoise lines: boundaries of the $\alpha=5 \%-\mathrm{Cls}$ of β_{1} and β_{2}
- Black line: boundary of simple interval null hypothesis $H_{03}: \beta_{2} \leq-1$ (t-test)
- Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma=\beta_{1}+30 \beta_{2}<0$ (t-test)
- Black symbols: simultaneous point hypotheses (F-test)

Visualization

- Turquoise lines: boundaries of the $\alpha=5 \%$ - Cls of β_{1} and β_{2}
- Black line: boundary of simple interval null hypothesis $H_{03}: \beta_{2} \leq-1$ (t-test)
- Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma=\beta_{1}+30 \beta_{2}<0$ (t-test)
- Black symbols: simultaneous point hypotheses (F-test)
$\left.\bullet: H_{05}:\left(\beta_{1}=30\right) \cap \beta_{2}=-1\right), \quad \triangle: \quad H_{06}:\left(\beta_{1}=30\right) \cap\left(\beta_{2}=-0.6\right)$.

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?
> $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality
- What happens for other values $\beta \notin H_{0}^{*}$? This is quantified by following conditional probability called statistical power function:

$$
\pi_{\alpha}(\beta)=\operatorname{Pr}(\text { test rejected at error probability } \alpha \mid \beta)
$$

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality
- What happens for other values $\beta \notin H_{0}^{*}$? This is quantified by following conditional probability called statistical power function:

$$
\pi_{\alpha}(\beta)=\operatorname{Pr}(\text { test rejected at error probability } \alpha \mid \beta)
$$

- If $\beta \notin H_{0}$, then $\pi(\beta)$ indicates the statistical power or specificity of a test and $1-\pi(\beta)$ its probability for a type-II error sensitivity of a test

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality
- What happens for other values $\beta \notin H_{0}^{*}$? This is quantified by following conditional probability called statistical power function:

$$
\pi_{\alpha}(\beta)=\operatorname{Pr}(\text { test rejected at error probability } \alpha \mid \beta)
$$

- If $\beta \notin H_{0}$, then $\pi(\beta)$ indicates the statistical power or specificity of a test and $1-\pi(\beta)$ its probability for a type-II error
- If $\beta \in H_{0}$, then $\pi(\beta)$ is the type-I (α) error and $1-\pi(\beta)$ the sensitivity of a test
\rightarrow Sensitivity and specificity depend on the assumed error probability α. By definition
\qquad

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta=\beta_{0} \in H_{0}^{*}$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P\left(H_{0}^{*}\right)=0$ exactly, so the tests and p-values do not reflect reality
- What happens for other values $\beta \notin H_{0}^{*}$? This is quantified by following conditional probability called statistical power function:

$$
\pi_{\alpha}(\beta)=\operatorname{Pr}(\text { test rejected at error probability } \alpha \mid \beta)
$$

- If $\beta \notin H_{0}$, then $\pi(\beta)$ indicates the statistical power or specificity of a test and $1-\pi(\beta)$ its probability for a type-II error
- If $\beta \in H_{0}$, then $\pi(\beta)$ is the type-I (α) error and $1-\pi(\beta)$ the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α. By definition, $\pi\left(\beta_{0}\right)=\alpha$ if $\beta_{0} \in H_{0}^{*}$

Calculating the statistical power function

- If $\beta \neq \beta_{0} \in H_{0}^{*}$, then the usual test function, e.g., $\left(\hat{\beta}_{j}-\beta_{j 0}\right) / \sqrt{\hat{V}_{j j}}$ does no longer obey a standard statistical distribution such as standardnormal or student-t
- However, $T=\left(\hat{\beta}_{j}-\beta_{j}\right) / \sqrt{\hat{V}_{j j}}$ does:

Calculating the statistical power function

- If $\beta \neq \beta_{0} \in H_{0}^{*}$, then the usual test function, e.g.,
$\left(\hat{\beta}_{j}-\beta_{j 0}\right) / \sqrt{\hat{V}_{j j}}$ does no longer obey a standard statistical distribution such as standardnormal or student-t
- However, $T=\left(\hat{\beta}_{j}-\beta_{j}\right) / \sqrt{\hat{V}_{j j}}$ does:

$$
T=\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{V}_{j j}}}=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}+\frac{\beta_{j 0}-\beta_{j}}{\sqrt{\hat{V}_{j j}}}=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}-\Delta T
$$

- \Rightarrow The independent variable of the power function is the

Calculating the statistical power function

- If $\beta \neq \beta_{0} \in H_{0}^{*}$, then the usual test function, e.g.,
$\left(\hat{\beta}_{j}-\beta_{j 0}\right) / \sqrt{\hat{V}_{j j}}$ does no longer obey a standard statistical distribution such as standardnormal or student-t
- However, $T=\left(\hat{\beta}_{j}-\beta_{j}\right) / \sqrt{\hat{V}_{j j}}$ does:

$$
T=\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{V}_{j j}}}=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}+\frac{\beta_{j 0}-\beta_{j}}{\sqrt{\hat{V}_{j j}}}=\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}-\Delta T
$$

- \Rightarrow The independent variable of the power function is the standardized difference $\Delta T=\left(\beta_{j}-\beta_{j 0}\right) / \sqrt{\hat{V}_{j j}}$

Example I: Interval test for $<$ and \leq

$$
\pi^{\leq}(\Delta T) \quad \text { def rejection } P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right)
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{rll}
\pi \leq(\Delta T) & \stackrel{\text { def }}{\text { rejection }} & P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& \stackrel{\text { def } \Delta T}{=} & P\left(T+\Delta T>t_{1-\alpha}\right)
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{cc}
\pi \leq(\Delta T) & \stackrel{\text { def rejection }}{=} \\
& P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& \stackrel{\operatorname{def} \Delta T}{=} \\
& P\left(T+\Delta T>t_{1-\alpha}\right) \\
= & P\left(T>-\Delta T+t_{1-\alpha}\right)
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{rlr}
\pi^{\leq}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& \stackrel{\text { def }}{=}=T & P\left(T+\Delta T>t_{1-\alpha}\right) \\
& = & P\left(T>-\Delta T+t_{1-\alpha}\right) \\
& = & 1-P\left(T<-\Delta T+t_{1-\alpha}\right)
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{ccl}
\pi \leq(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& \stackrel{\operatorname{def} \Delta T}{=} & P\left(T+\Delta T>t_{1-\alpha}\right) \\
& = & P\left(T>-\Delta T+t_{1-\alpha}\right) \\
& = & 1-P\left(T<-\Delta T+t_{1-\alpha}\right) \\
& \stackrel{\text { symm. }}{=} & P\left(T<\Delta T-t_{1-\alpha}\right)
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{rll}
\pi^{\leq}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& \stackrel{\text { def } \Delta T}{=} & P\left(T+\Delta T>t_{1-\alpha}\right) \\
& = & P\left(T>-\Delta T+t_{1-\alpha}\right) \\
& = & 1-P\left(T<-\Delta T+t_{1-\alpha}\right) \\
\text { symm. } & P\left(T<\Delta T-t_{1-\alpha}\right) \\
& \stackrel{\text { def distr. }}{=} & \underline{\underline{F_{T}\left(\Delta T-t_{1-\alpha}\right)}}
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{rll}
\pi^{\leq}(\Delta T) & \left.\stackrel{\hat{\beta}_{j}-\beta_{j 0}}{=}>t_{1-\alpha}\right) \\
\sqrt{\hat{V}_{j j}} & P\left(\frac{\text { defection }^{=}}{=}\right. & P\left(T+\Delta T>t_{1-\alpha}\right) \\
& = & P\left(T>-\Delta T+t_{1-\alpha}\right) \\
& = & 1-P\left(T<-\Delta T+t_{1-\alpha}\right) \\
\text { symm. } & P\left(T<\Delta T-t_{1-\alpha}\right) \\
& \stackrel{\text { def distr. }}{=} & \underline{\underline{F_{T}\left(\Delta T-t_{1-\alpha}\right)}}
\end{array}
$$

Example I: Interval test for $<$ and \leq

$$
\begin{array}{rll}
\pi^{\leq}(\Delta T) & \left.\stackrel{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}>t_{1-\alpha}\right) \\
& P\left(\frac{\text { def }}{=} \Delta T\right. & P\left(T+\Delta T>t_{1-\alpha}\right) \\
& = & P\left(T>-\Delta T+t_{1-\alpha}\right) \\
& = & 1-P\left(T<-\Delta T+t_{1-\alpha}\right) \\
\text { symm. } & P\left(T<\Delta T-t_{1-\alpha}\right) \\
& \stackrel{\text { def distr. }}{=} & \underline{\underline{F_{T}\left(\Delta T-t_{1-\alpha}\right)}}
\end{array}
$$

? Test this expression by calculating $\pi \leq(0)$ and $\pi^{\prime} \leq(0)$
! Just insert $\Delta T=0$:

$$
\begin{array}{rll}
\pi \leq(0) & = & F_{T}\left(-t_{1-\alpha}\right) \\
& = & F_{T}\left(t_{\alpha}\right) \\
& \stackrel{\text { def quantile }}{=} & \alpha \checkmark \\
\pi^{\prime} \leq(0) & = & \\
\pi_{T}\left(-t_{1-\alpha}\right)>0
\end{array}
$$

Type I and II errors for " $<$ " or " \leq "-tests as a function of the true value relative to H_{0}, known variance

- The maximum type-I error probability of α occurs if $\beta=\beta_{0}$, i.e., at the boundary of H_{0}.

Type I and II errors for " $<$ " or " \leq "-tests as a function of the true value relative to H_{0}, known variance

- The maximum type-I error probability of α occurs if $\beta=\beta_{0}$, i.e., at the boundary of H_{0}.
- The maximum type-II error probability of $1-\alpha$ occurs if β is just outside of H_{0}.

The same for unknown variance, $\mathrm{df}=2$ degrees of freedom

- The increase with ΔT is steeper but $\pi(0)=\alpha$ is unchanged

Example II: Interval test for for $>$ and \geq

$$
\begin{array}{ccl}
\pi^{\geq}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\frac{\hat{\beta}_{j}-\beta_{j 0}}{\sqrt{\hat{V}_{j j}}}<t_{\alpha}\right) \\
& \stackrel{\operatorname{def}}{=} \Delta T & P\left(T+\Delta T<t_{\alpha}\right) \\
= & P\left(T<-\Delta T+t_{\alpha}\right) \\
& \stackrel{\text { def distr. }}{=} & \underline{F_{T}\left(t_{\alpha}-\Delta T\right)}
\end{array}
$$

? Test this expression by calculating $\pi^{\geq}(0)$ and $\pi^{\prime} \geq(0)$
! Just insert $\Delta T=0$:

$$
\begin{array}{rll}
\pi^{\geq}(0) & \text { def quantile } & \alpha \\
\pi^{\prime} \geq(0) & = & -f_{T}(0)<0
\end{array}
$$

Type I and II errors for " $>$ " or " \geq "-tests, known variance

- Again, the maximum type I and II error probabilities of α and $1-\alpha$, respectively, are obtained if the true parameter(s) are at the boundary / very near outside of H_{0}.

Type I and II errors for ">" or " \geq "-tests, known variance

- Again, the maximum type I and II error probabilities of α and $1-\alpha$, respectively, are obtained if the true parameter(s) are at the boundary / very near outside of H_{0}.
- The maximum type-I error probability is also known as significance level.

The same for unknown variance, $\mathrm{df}=2$ degrees of freedom

Example III: Point test for "="

$$
\pi^{\mathrm{eq}}(\Delta T) \quad \stackrel{\text { def rejection }}{=} \quad P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right)
$$

Example III: Point test for "="

$$
\begin{array}{cc}
\pi^{\text {eq }}(\Delta T) & \stackrel{\text { def rejection }}{=} \\
& P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
\operatorname{def} \Delta T & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right)
\end{array}
$$

Example III: Point test for "="

$$
\begin{array}{rll}
\pi^{\mathrm{eq}}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
\stackrel{\text { def } \Delta T}{=} & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right) \\
& = & P\left(T+\Delta T>t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha / 2}\right)
\end{array}
$$

Example III: Point test for "="

$$
\begin{array}{rll}
\pi^{\mathrm{eq}}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
& \stackrel{\operatorname{def} \Delta T}{=} & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right) \\
& = & P\left(T+\Delta T>t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha / 2}\right) \\
& = & 1-P\left(T+\Delta T \leq t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha}\right)
\end{array}
$$

Example III: Point test for "="

$$
\begin{array}{rll}
\pi^{\text {eq }}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
& \stackrel{\text { def } \Delta T}{=} & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right) \\
& = & P\left(T+\Delta T>t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha / 2}\right) \\
& = & 1-P\left(T+\Delta T \leq t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha}\right. \\
& \stackrel{\text { def distr. }}{=} & 1-F_{T}\left(t_{1-\alpha / 2}-\Delta T\right)+F_{T}\left(-t_{1-\alpha / 2}-\Delta T\right)
\end{array}
$$

Example III: Point test for "="

$$
\begin{array}{rll}
\pi^{\text {eq }}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
& \stackrel{\text { def } \Delta T}{=} & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right) \\
& = & P\left(T+\Delta T>t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha / 2}\right) \\
& = & 1-P\left(T+\Delta T \leq t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha}\right) \\
& \stackrel{\text { def distr. }}{=} & 1-F_{T}\left(t_{1-\alpha / 2}-\Delta T\right)+F_{T}\left(-t_{1-\alpha / 2}-\Delta T\right) \\
& \stackrel{\text { symm. }}{=} & \underline{=} \\
& \underline{=} F_{T}\left(t_{1-\alpha / 2}-\Delta T\right)-F_{T}\left(t_{1-\alpha / 2}+\Delta T\right)
\end{array}
$$

Example III: Point test for "="

$$
\begin{array}{ccl}
\pi^{\text {eq }}(\Delta T) & \stackrel{\text { def rejection }}{=} & P\left(\left|\frac{\hat{\beta}_{j}-\beta_{j 0}}{\hat{\sigma}_{\hat{\beta}_{j}}}\right|>t_{1-\alpha / 2}\right) \\
& \text { def } \Delta T & P\left(|T+\Delta T|>t_{1-\alpha / 2}\right) \\
= & P\left(T+\Delta T>t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha / 2}\right) \\
& = & 1-P\left(T+\Delta T \leq t_{1-\alpha / 2}\right)+P\left(T+\Delta T<-t_{1-\alpha}\right) \\
& \text { def distr. } & 1-F_{T}\left(t_{1-\alpha / 2}-\Delta T\right)+F_{T}\left(-t_{1-\alpha / 2}-\Delta T\right) \\
& \stackrel{\text { symm. }}{=} & \underline{2-F_{T}\left(t_{1-\alpha / 2}-\Delta T\right)-F_{T}\left(t_{1-\alpha / 2}+\Delta T\right)}
\end{array}
$$

? Test this expression by calculating $\pi \leq(0)$
! Just insert $\Delta T=0$:

$$
\pi^{\mathrm{eq}}(0)=2-(1-\alpha / 2)-(1-\alpha / 2)=\alpha
$$

Type I and II errors for two-sided (point-)tests (unkown variance, $\mathrm{df}=2$)

- Since H_{0} is a point set here, the type-I error probability is always given by α ("significance level")

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (wly?)

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (wly?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five 1 can make him wiggle [its] trunk.

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (wly?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five 1 can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (wly?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five 1 can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.
- \Rightarrow we need selection criteria taking care of overfitting!

Model selection: some standard criteria

- (1) Adjusted R^{2} :

$$
\bar{R}^{2}=1-\frac{n-1}{n-J-1}\left(1-R^{2}\right), \quad R^{2}=1-\frac{S}{S_{0}},
$$

$S=\operatorname{SSE}\left(\right.$ calibr. full model), $\quad S_{0}=\operatorname{SSE}($ calibr. constant-only model).

(2) Akaike information criterion AIC:

Model selection: some standard criteria

- (1) Adjusted R^{2} :

$$
\bar{R}^{2}=1-\frac{n-1}{n-J-1}\left(1-R^{2}\right), \quad R^{2}=1-\frac{S}{S_{0}},
$$

$S=\operatorname{SSE}\left(\right.$ calibr. full model), $\quad S_{0}=\operatorname{SSE}($ calibr. constant-only model).

- (2) Akaike information criterion AIC:

$$
\mathrm{AIC}=\ln \hat{\sigma}_{\text {descr }}^{2}+J \frac{2}{n}
$$

- (3) Bayes' Information criterion BIC:

Model selection: some standard criteria

- (1) Adjusted R^{2} :

$$
\bar{R}^{2}=1-\frac{n-1}{n-J-1}\left(1-R^{2}\right), \quad R^{2}=1-\frac{S}{S_{0}},
$$

$S=\operatorname{SSE}\left(\right.$ calibr. full model), $\quad S_{0}=\operatorname{SSE}$ (calibr. constant-only model).

- (2) Akaike information criterion AIC:

$$
\mathrm{AIC}=\ln \hat{\sigma}_{\mathrm{descr}}^{2}+J \frac{2}{n}
$$

(3) Bayes' Information criterion BIC:

$$
\mathrm{BIC}=\ln \hat{\sigma}_{\text {descr }}^{2}+J \frac{\ln n}{n} .
$$

Notice that the descriptive $\hat{\sigma}_{\text {descr }}^{2}=S / n$ instead of the unbiased $\hat{\sigma}^{2}=S /(n-1-J)$ are assumed when defining AIC and BIC.

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate \bar{R}^{2}, AIC , or BIC for all 2^{J} combinations of these factors (a given factor is either contained or not) by brute force).
- The best model is that maximizing \bar{R}^{2} or minimizing AIC or BIC.

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate \bar{R}^{2}, AIC, or BIC for all 2^{J} combinations of these factors (a given factor is either contained or not) by brute force).
- The best model is that maximizing \bar{R}^{2} or minimizing AIC or BIC.
\rightarrow Since AIC and also \bar{R}^{2} penalize complex models (with many parameters) too little, the BIC is usually the best bet

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate \bar{R}^{2}, AIC, or BIC for all 2^{J} combinations of these factors (a given factor is either contained or not) by brute force).
- The best model is that maximizing \bar{R}^{2} or minimizing AIC or BIC.
- Since AIC and also \bar{R}^{2} penalize complex models (with many parameters) too little, the BIC is usually the best bet.
\rightarrow Besides the brute-force approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
- Top-down approach: Start with all the J factors. In each round, eliminate a single factor such that the reduced model has the highest increase in $R^{2} /$ decrease in AIC or BIC . Stop if there is no further improvement.
\rightarrow Bottom-up approach: Start with the constant-only model $y=\beta_{0}$ and successively add factors until there is no further improvement.

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate \bar{R}^{2}, AIC, or BIC for all 2^{J} combinations of these factors (a given factor is either contained or not) by brute force).
- The best model is that maximizing \bar{R}^{2} or minimizing AIC or BIC.
- Since AIC and also \bar{R}^{2} penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the brute-force approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
- Top-down approach: Start with all the J factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \bar{R}^{2} / decrease in AIC or BIC. Stop if there is no further improvement.
- Bottom-up approach: Start with the constant-only model $y=\beta_{0}$ and successively add factors until there is no further improvement.
- Standard statistics packages contain all of these strategies.

4.4. Logistic regression

- Normal linear models of the form $Y=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon$ require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y^{*} allows one to model binary outcomes:
\square
where ϵ obeys the logistic distribution with $F_{\epsilon}(x)=e^{x} /\left(e^{x}+1\right)$
- Probability P_{1} for the outcome $Y=1$

4.4. Logistic regression

- Normal linear models of the form $Y=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon$ require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y^{*} allows one to model binary outcomes:

$$
Y(\boldsymbol{x})=\left\{\begin{array}{ll}
1 & Y^{*}(\boldsymbol{x})>0 \\
0 & \text { otherwise }
\end{array} \quad Y^{*}(\boldsymbol{x})=\hat{y}^{*}(\boldsymbol{x})+\epsilon=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon\right.
$$

where ϵ obeys the logistic distribution with $F_{\epsilon}(x)=e^{x} /\left(e^{x}+1\right)$
\rightarrow Probability P_{1} for the outcome $Y=1$

4.4. Logistic regression

- Normal linear models of the form $Y=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon$ require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y^{*} allows one to model binary outcomes:

$$
Y(\boldsymbol{x})=\left\{\begin{array}{ll}
1 & Y^{*}(\boldsymbol{x})>0 \\
0 & \text { otherwise }
\end{array} \quad Y^{*}(\boldsymbol{x})=\hat{y}^{*}(\boldsymbol{x})+\epsilon=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon\right.
$$

where ϵ obeys the logistic distribution with $F_{\epsilon}(x)=e^{x} /\left(e^{x}+1\right)$

- Probability P_{1} for the outcome $Y=1$:

$$
P_{1}=P\left(Y^{*}(\boldsymbol{x})>0\right)=F_{\epsilon}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{x}\right)=\frac{e^{\boldsymbol{\beta}^{\prime} \boldsymbol{x}}}{e^{\boldsymbol{\beta}^{\prime} \boldsymbol{x}}+1}
$$

- Formally, this is a normal linear regression model for the log of the odds ratio $P_{1} / P_{0}=P 1 /\left(1-P_{1}\right)$:

4.4. Logistic regression

- Normal linear models of the form $Y=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon$ require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y^{*} allows one to model binary outcomes:

$$
Y(\boldsymbol{x})=\left\{\begin{array}{ll}
1 & Y^{*}(\boldsymbol{x})>0 \\
0 & \text { otherwise }
\end{array} \quad Y^{*}(\boldsymbol{x})=\hat{y}^{*}(\boldsymbol{x})+\epsilon=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon\right.
$$

where ϵ obeys the logistic distribution with $F_{\epsilon}(x)=e^{x} /\left(e^{x}+1\right)$

- Probability P_{1} for the outcome $Y=1$:

$$
P_{1}=P\left(Y^{*}(\boldsymbol{x})>0\right)=F_{\epsilon}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{x}\right)=\frac{e^{\boldsymbol{\beta}^{\prime} \boldsymbol{x}}}{e^{\boldsymbol{\beta}^{\prime} \boldsymbol{x}}+1}
$$

- Formally, this is a normal linear regression model for the log of the odds ratio $P_{1} / P_{0}=P 1 /\left(1-P_{1}\right)$:

$$
\hat{y}^{*}(\boldsymbol{x})=\boldsymbol{\beta}^{\prime} \boldsymbol{x}=\ln \left(\frac{P_{1}}{P_{0}}\right)
$$

Example: naive OLS-estimation (RP student interviews)

- Alternatives: $i=1$: motorized and $i=2$ (not)
- Intermediate variable estimated by percentaged choices:
$y^{*}=\ln \left(f_{1} /\left(1-f_{1}\right)\right)$
- Model: Log. regression, $\hat{y}^{*}\left(x_{1}\right)=\beta_{0}+\beta_{1} x_{1}$
- OLS Estimation: $\beta_{0}=-0.58, \quad \beta_{1}=0.79$

Method consistent? added $5^{\text {th }}$ data point with $\mathrm{f}=0.9999$

- Same model: $\hat{y}^{*}\left(x_{1}\right)=\beta_{0}+\beta_{1} x_{1}$
- New estimation: $\beta_{0}=-3.12, \quad \beta_{1}=2.03$
- Estimation would fail if $f_{1}=0$ or $=1 \Rightarrow$ real discrete-choice model necessary!

Comparison: real Maximum-Likelihood (ML) estimation

- Model: Logit, $V_{i}\left(x_{1}\right)=\beta_{0} \delta_{i 1}+\beta_{1} x_{1} \delta_{i 1}, V_{2}=0$.
- Estimation: $\beta_{0}=-0.50 \pm 0.65, \beta_{1}=+0.71 \pm 0.30$

Comparison: real ML estimation with added $5^{\text {th }}$ data point

- Same logit model, $V_{i}\left(x_{1}\right)=\beta_{0} \delta_{i 1}+\beta_{1} x_{1} \delta_{i 1}, V_{2}=0$.
- New estimation: $\beta_{0}=-0.55 \pm 0.63, \beta_{1}=+0.75 \pm 0.27$

[^0]: What if the estimator has a known distribution but the variance is unknown?

[^1]: What if the estimator has a known distribution but the variance is unknown?
 Test function in units of the estimated standard deviation

