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4. Significance Tests
4.1 General Four-Step Procedure

1. Formulate a null hypothesis H0 such that their rejection gives
insight, e.g. βj = βj0 (point hypothesis) or βj ≤ β0 (interval
hypothesis): Notice: One cannot confirm H0

2. Select a test function or statistics T
I whose distribution is known provided the parameters are at the

margin H∗
0 of the null hypothesis (of course, H∗0 = H0 for a

point null hypothesis)
What if the estimator has a known distribution but the variance is unknown?
Test function in units of the estimated standard deviation

I which has distinct rejection regions R(α) which are reached
rarely (with a probability ≤ α) if H0 but more often if H1 = H0

3. Evaluate a realisation tdata of T from the data

4. Check if tdata ∈ R(α). If yes, H0 can be rejected at an error
probability or significance level α. Otherwise, nothing can be
said (mask example with H0: “mask useless”).

4a Alternatively, calculate the p-value as the minimum α at which
H0 can be rejected.
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4.1.1 Step 1: Choosing H0: Type I and II errors

I A significance test reduces reality to a “binary in-binary out” setting.

There are two combinations corresponding to a correct test result

I We can control the type I or α-error probability
P (H0 rejected|H0) ≤ α in significance tests

I Since the type II or β-error probability P (H0 not rejected|H0) is
unknown, the more serious error type should be the α error

I
Fundamental problem: I want P (H0|rejected) and P (H0|rejected)
while I get control over P (rejected|H0) ≤ P (rejected|H∗0 ) ⇒
Bayesian statistics
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4.1.2 Steps 2 and 3: Test statistics I

I (i) Testing parameters such as H0: βj = βj0 or βj ≥ βj0 or βj ≤ βj0:

The test function is the estimated deviation from H∗0 in units of the
estimated error standard deviation. It is student-t distributed with
#dataPoints- #parameters degrees of freedom (df):

T =
β̂j − βj0√

V̂jj

∼ T (n− 1− J)

I (ii) Testing functions of parameters such as H0: β1/β2 = 2, ≤ 2 or
≥ 2: Transform into a linear combination. Then, the normalized
estimated deviation is student-t distributed under H∗0 . Here, at H∗0 , the
linear combination is b = β1 − 2β2 = 0:

b̂ = β̂1 − 2β̂2,

V̂ (b̂) = V̂11 + 4V̂22 − 4V̂12,

T =
b̂√
V̂ (b̂)

∼ T (n− 1− J)
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Test statistics II

I (iii) Testing the correlation coefficient in an xy scatter plot:

ρ̂ =
sxy
sxsy

, H0 : ρ = 0, T =
ρ̂√

1− ρ̂2

√
n− 2 ∼ T (n− 2)

Derivation: ρ = 0 if, and only if, in a simple linear regression
y = β0 + β1x+ ε, the slope parameter β1 = 0, so test for β1 = 0: Under H0,
the test statistics

T = β̂1/

√
V̂11 =

sxy
σ̂ sx

√
n ∼ T (n− 2)

Now insert σ̂ which can, in the simple-regression case, be explicitely
calculated: σ̂2 = n(s2y − s2xy/s2x)/(n− 2)

I (iv) Test for the residual variance, H0: σ
2 = σ2

0 , σ
2 ≥ σ2

0 , and σ
2 ≤ σ2

0 :

T =
σ̂2

σ2
0

(n− 1− J) ∼ χ2(n− 1− J)

The one-parameter chi-squared distribution with m degrees of freedom
χ2(m) =

∑m
i=1 Z

2
i is the sum of squares of i.i.d. Gaussians. Its density is not

symmetric, so we need to calculate both the α and 1− α quantiles
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Test statistics III

I (v) Tests of simultaneous point null hypotheses, e.g., H0: (β1 = 0)
AND (β2 = 2) using the Fisher-F test:

T =
(S0 − S)/(M −M0)

S/(n−M)
∼ F (M −M0, n−M)

I S: SSE of the estimated full model with M = J + 1 parameters
I S0: SSE of the estimated restrained model under H0 with M0 free

parameters

I The Fisher-F distribution is essentially the ratio of two independent χ2

distributed random variables,

F (n, d) =
χ2
n/n

χ2
d/d

,

with n numerator and d denominator degrees of freedom

? Argue that always S0 ≥ S
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Equivalence of the F and T-tests for one parameter

With M −M0 = 1, the F-test is equivalent to a parameter test for the
parameter j in question:

I Parameter test: T =
β̂j−βj0√
V̂ (β̂j)

∼ T (n− 1− J)

I F-test: T = (n− J − 1)S0−S
S ∼ F (1, n− 1− J)

? Regarding the rhs., show following general relation between the student-t and the

F(1,d) distributions: F ∼ F (1, d) and T ∼ T (d)⇒ F = T 2

! By definition, Fisher’s F is a ratio of χ2 distributions. Furthermore, squares of standardnormal random variables
Z are χ2

1 distributed:

F (1, d) = χ
2
1/(χ

2
d/d) = Z

2
/(χ

2
d/d)

where Z ∼ N(0, 1) and χ2
d and Z are independent from each other. The definition of the student-t

distribution is T (d) = Z/
√
χ2
d
/d, so F (1, d) = T2

d .

I One can show (difficult!) that following is exactly valid for the lhs.:

(n− J − 1)
S0 − S
S

=
(β̂j − βj0)2

V̂ (β̂j)
=

(β̂j − βj0)2

V̂jj

where S0 is the (minimum) SSE for the calibrated restrained model
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distribution is T (d) = Z/
√
χ2
d
/d, so F (1, d) = T2

d .

I One can show (difficult!) that following is exactly valid for the lhs.:

(n− J − 1)
S0 − S
S

=
(β̂j − βj0)2

V̂ (β̂j)
=

(β̂j − βj0)2

V̂jj

where S0 is the (minimum) SSE for the calibrated restrained model
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4.1.3 Step 4: Decision

I The decision is based on the rejection region:

The rejection region R(H0)(α) contains the
fraction α of all realisations t of the test statis-
tics T which, under H∗0 , are most distant from
H0

I Decision:

H0 is rejected at significance level α if tdata ∈ R(H0)(α)

I A good test statistics allows for a clear definition of what is
meant by “distance to H0” and brings, for a given α, the
boundary of the rejection region as close to H∗0 as possible

I In contrast to T and the realisation tdata which only depends on
H∗0 and therefore is the same for point and interval hypotheses of
the same kind, the rejection region is different for the different
comparison operators =, ≥, ≤
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1. Rejection region for H0: “<” or “≤” (interval hypothesis)

I H0 is rejected on the level α if

tdata > t1−α



Econometrics Master’s Course: Methods 4. Significance Tests 4.1 General Four-Step Procedure

1. Rejection region for H0: “<” or “≤” (interval hypothesis)

I H0 is rejected on the level α if

tdata > t1−α



Econometrics Master’s Course: Methods 4. Significance Tests 4.1 General Four-Step Procedure

2. Rejection region for H0: “>” or “≥” (interval hypothesis)

I H0 is rejected on the level α if

tdata < tα = −t1−α
I The equality sign is only valid for symmetric test statistics
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3. Rejection region for H0: “=” (point hypothesis)

I For symmetric test statistics, H0 is rejected on the level α if

|tdata| > t1−α/2

I If the distribution is not symmetric (as the χ2 distribution for the
variance test), the definition of what is “most distant” is not unique.
For simplicity, one assumes equal statistical weights to both sides:

rejected ⇔ (tdata < tα/2) ∪ (tdata > t1−α/2)
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Example: modeling the demand for hotel rooms
The already well-known example for y(x): hotel room occupancy [%]

y = β0x0 + β1x1 + β2x2 + ε

where x0 = 1, x1: proxy for quality [# stars]; x2: price [e/night],

β̂0 = 25.5, β̂1 = 38.2, β̂2 = −0.952

and

V̂ =

 28.0 −6.40 −0.119
−6.40 26.0 −0.941
−0.119 −0.941 0.0397


? Formulate and test the null hypothesis at α = 5 % that the stars do not

matter

! H01 : β1 = 0, point t-test with T = β̂1/
√
V̂11 ∼ T (12− 3), i.e. df=9 degrees of

freedom, tdata = 7.49, t
(9)
0.975 = 2.26 < |tdata| ⇒ H0 rejected, stars matter

? Do people favour more stars (at α = 5 %)?

! H02 : β1 <= 0 (use as H0 what you want to reject!), interval test with same T and

tdata as above, t
(9)
0.95 = 1.83 < tdata ⇒ H02 rejected, more stars are better
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Example: modeling the demand for hotel rooms (ctned)

? Does each e more per night decrease the occupancy by at most 1 %?

! H03 : β2 < −1 (H03 is the complement event!),

tdata = (β̂2 + 1)/
√
V̂22 = 0.24

!
> t

(9)
0.95 = 1.83 ⇒ H03 not rejected

⇒ the hotel manager might risk losing more than one percent point of customers

? Is it worth renovating my hotel thereby gaining one star so that
I can ask for 30e more per night without losing guests?

! Again, define the complement event as H04 : β1 ≤ −30β2 or γ = β1 + 30β2 ≤ 0

γ̂ = β̂1 + 30β̂2 = 9.63,

V̂ (γ̂) = V̂11 + 900V̂22 + 2 ∗ 1 ∗ 30V̂12 = 5.27

So, tdata = γ̂/

√
V̂ (γ̂) = 4.20 > t

(9)
0.95 = 1.83 ⇒ H04 rejected at 5 % ⇒ the risk of

losing customers is less than 5 %

? Can it be simultaneously true that β1 = 30 and β2 = −1?

! Full model: β̂ = (25.5, 38.2,−0.952)′, S(β̂) = 498.2;

Reduced model with fixed β1 = 30, β2 = 1 leading to β̂0 = 49.0:
β̂r = (49.0, 30,−1)′, S0 = S(β̂r) = 1808; M −M0 = 2 df, n−M = 9 df,

T ∼ F (2, 9), tdata = 9/2 (S0 − S)/S = 11.8 > f
(2.9)
0.95 = 4.26 ⇒ H0 rejected
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4.1.4 The p-value

I Obviously, it is not very efficient to test H0 for a fixed significance
level α (one does not know how significant the result really is)

I Instead, one would like to know the minimum α for rejection
(notice the statistical reliability-sensitivity uncertainty relation) or
the p-value.

I The most general definition is:

p = Prob(T ∈ Edata|H∗0 ))

where the extreme region Edata contains all realisations of T that
are further away from H0 than tdata. Hence, tdata lies on the
boundary of Edata Relation to the rejection region? p is defined such

that Edata = R(p)

I p ≥ 5 %: not significant (no star at the value for β, sometimes a
“+” if between 5 % and 10 %, e.g., β1 = 4.2+)

I p < 5 %: significant (one star, e.g., β1 = 4.2∗)
I p < 1 %: very significant (two star, β1 = 4.2∗∗)
I p < 0.001: highly significant (three stars, β1 = 4.2∗∗∗)
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Calculating p for some basic tests

I Interval test H0 : β ≤ β0 or β < β0

p = P (T > tdata|β = β0) = 1−FT (tdata)

I Interval test H0 : β ≥ β0 or β > β0

p = P (T < tdata|β = β0) = FT (tdata)

I Point test H0 : β = β0 (symmetry of fT
assumed at the 3rd equality sign)
p = P

(
(T > |tdata|) ∪ (T < −|tdata|)

)
= (1− FT (|tdata|)) + FT (−|tdata|)
= 1− FT (|tdata|) + 1− FT (|tdata|)
= 2(1− FT (|tdata|))
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p-values for the null hypotheses of the hotel example

y = β0x0 + β1x1 + β2x2 + ε

where x0 = 1, x1: proxy for quality [# stars]; x2: price

I H01 “stars do not matter”: point hypothesis β1 = 0

tdata = 7.49, p = 2(1− F (9)
T )(|tdata|) = 3.7E − 5∗∗∗

I H02 “more stars are better”: interval hypothesis β1 < 0

tdata = 7.49, p = 1− F (9)
T (tdata) = 1.9E − 5∗∗∗

I H03 “∆ occupancy ≤ −1 % per addtl e”: interval hypothesis β2 < −1

tdata = 0.24, p = 1− F (9)
T (tdata) = 40 %

I H04 One star more is worth less than 30e”:
function interval hypothesis γ = β1 + 30β2 < 0

tdata = 4.20, p = 1− F (9)
T (tdata) = 0.12 %∗∗

I H05 “star and price sensitivity simultaneously given”:
compound point hypothesis (β1 = 30) ∩ (β2 = −1)

tdata = 11.8, p = 1− F (2,9)
F (tdata) = 0.30 %∗∗
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Visualization

I Turquoise lines: boundaries of the α = 5 %-CIs of β1 and β2
I Black line: boundary of simple interval null hypothesis H03 : β2 ≤ −1 (t-test)

I Red boxes: boundary of the function intervall hypothesis H04 : γ = β1 + 30β2 < 0
(t-test)

I Black symbols: simultaneous point hypotheses (F -test)
•: H05 : (β1 = 30) ∩ β2 = −1), 4: H06 : (β1 = 30) ∩ (β2 = −0.6).
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4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null
hypothesis which is supposed to be marginally fulfilled, β = β0 ∈ H∗0 .
What if the true parameter values take on other values?

I Since regression parameters are continuous, the probability
P (H∗0 ) = 0 exactly, so the tests and p-values do not reflect reality

I What happens for other values β /∈ H∗0 ? This is quantified by
following conditional probability called statistical power
function:

πα(β) = Pr(test rejected at error probability α|β)

I If β /∈ H0, then π(β) indicates the statistical power or
specificity of a test and 1−π(β) its probability for a type-II error

I If β ∈ H0, then π(β) is the type-I (α) error and 1− π(β) the
sensitivity of a test

I Sensitivity and specificity depend on the assumed error
probability α. By definition, π(β0) = α if β0 ∈ H∗0
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Calculating the statistical power function

I If β 6= β0 ∈ H∗0 , then the usual test function, e.g.,

(β̂j − βj0)/
√
V̂jj does no longer obey a standard statistical

distribution such as standardnormal or student-t

I However, T = (β̂j − βj)/
√
V̂jj does:

T =
β̂j − βj√

V̂jj

=
β̂j − βj0√

V̂jj

+
βj0 − βj√

V̂jj

=
β̂j − βj0√

V̂jj

−∆T

I ⇒ The independent variable of the power function is the

standardized difference ∆T = (βj − βj0)/
√
V̂jj
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Example I: Interval test for < and ≤

π≤(∆T )
def rejection

= P

 β̂j − βj0√
V̂jj

> t1−α



def ∆T
= P (T + ∆T > t1−α)

= P (T > −∆T + t1−α)

= 1− P (T < −∆T + t1−α)
symm.

= P (T < ∆T − t1−α)
def distr.

= FT (∆T − t1−α)

? Test this expression by calculating π≤(0) and π′≤(0)
! Just insert ∆T = 0:

π≤(0) = FT (−t1−α)

= FT (tα)

def quantile
= α

π′≤(0) = fT (−t1−α) > 0
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Type I and II errors for “<” or “≤”-tests as a function
of the true value relative to H0, known variance

I The maximum type-I error probability of α occurs if β = β0,
i.e., at the boundary of H0.

I The maximum type-II error probability of 1− α occurs if β is
just outside of H0.
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The same for unknown variance, df=2 degrees of freedom

I The increase with ∆T is steeper but π(0) = α is unchanged
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Example II: Interval test for for > and ≥

π≥(∆T )
def rejection

= P

 β̂j − βj0√
V̂jj

< tα


def ∆T

= P (T + ∆T < tα)

= P (T < −∆T + tα)
def distr.

= FT (tα −∆T )

? Test this expression by calculating π≥(0) and π′≥(0)

! Just insert ∆T = 0:

π≥(0)
def quantile

= α

π′≥(0) = −fT (0) < 0
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Type I and II errors for “>” or “≥”-tests, known variance

I Again, the maximum type I and II error probabilities of α and
1− α, respectively, are obtained if the true parameter(s) are at
the boundary / very near outside of H0.

I The maximum type-I error probability is also known as
significance level.
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The same for unknown variance, df=2 degrees of freedom
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Example III: Point test for “=”

π eq(∆T )
def rejection

= P

(∣∣∣∣∣ β̂j − βj0σ̂β̂j

∣∣∣∣∣ > t1−α/2

)

def ∆T
= P (|T + ∆T | > t1−α/2)

= P (T + ∆T > t1−α/2) + P (T + ∆T < −t1−α/2)

= 1− P (T + ∆T ≤ t1−α/2) + P (T + ∆T < −t1−α/2)

def distr.
= 1− FT (t1−α/2 −∆T ) + FT (−t1−α/2 −∆T )

symm.
= 2− FT (t1−α/2 −∆T )− FT (t1−α/2 + ∆T )

? Test this expression by calculating π≤(0)

! Just insert ∆T = 0:

π eq(0) = 2− (1− α/2)− (1− α/2) = α
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Type I and II errors for two-sided (point-)tests
(unkown variance, df=2)

I Since H0 is a point set here, the type-I error probability is always
given by α (“significance level”)
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4.3 Model Selection Strategies
Problem Statement

I With every additional parameter, the fit quality in
terms of the SSE becomes better (why?)

I However, the risk of overfitting increases. In the
words of John Neumann: With four parameters I
can fit an elephant, and with five I can make him
wiggle [its] trunk.

I Overfitted models do not validate and can make
neither statements nor predictions.

I ⇒ we need selection criteria taking care of
overfitting!
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Model selection: some standard criteria

I (1) Adjusted R2:

R̄2 = 1− n− 1

n− J − 1

(
1−R2

)
, R2 = 1− S

S0
,

S = SSE(calibr. full model), S0 = SSE(calibr. constant-only model).

I (2) Akaike information criterion AIC:

AIC = ln σ̂2
descr + J

2

n
,

I (3) Bayes’ Information criterion BIC:

BIC = ln σ̂2
descr + J

lnn

n
.

Notice that the descriptive σ̂2
descr = S/n instead of the unbiased

σ̂2 = S/(n− 1− J) are assumed when defining AIC and BIC.
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Model selection: Strategy à la “Occam’s Razor”

I Identify J possibly relevant exogenous factors (the constant is always
included) and calculate R̄2, AIC, or BIC for all 2J combinations of
these factors (a given factor is either contained or not) by brute force).

I The best model is that maximizing R̄2 or minimizing AIC or BIC.

I Since AIC and also R̄2 penalize complex models (with many
parameters) too little, the BIC is usually the best bet.

I Besides the brute-force approach, there are two faster strategies that
may not find the “best” model (BIC etc are not transitive)

I Top-down approach: Start with all the J factors. In each round,
eliminate a single factor such that the reduced model has the
highest increase in R̄2 / decrease in AIC or BIC. Stop if there is
no further improvement.

I Bottom-up approach: Start with the constant-only model
y = β0 and successively add factors until there is no further
improvement.

I Standard statistics packages contain all of these strategies.
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I Identify J possibly relevant exogenous factors (the constant is always
included) and calculate R̄2, AIC, or BIC for all 2J combinations of
these factors (a given factor is either contained or not) by brute force).

I The best model is that maximizing R̄2 or minimizing AIC or BIC.

I Since AIC and also R̄2 penalize complex models (with many
parameters) too little, the BIC is usually the best bet.

I Besides the brute-force approach, there are two faster strategies that
may not find the “best” model (BIC etc are not transitive)

I Top-down approach: Start with all the J factors. In each round,
eliminate a single factor such that the reduced model has the
highest increase in R̄2 / decrease in AIC or BIC. Stop if there is
no further improvement.

I Bottom-up approach: Start with the constant-only model
y = β0 and successively add factors until there is no further
improvement.

I Standard statistics packages contain all of these strategies.



Econometrics Master’s Course: Methods 4. Significance Tests 4.4. Logistic regression

4.4. Logistic regression

I Normal linear models of the form Y = β′x+ ε require the endogenous
variable to be continuous (discuss!)

I Using model chaining with an unobservable intermediate continuous
variable Y ∗ allows one to model binary outcomes:

Y (x) =

{
1 Y ∗(x) > 0
0 otherwise,

Y ∗(x) = ŷ∗(x) + ε = β′x+ ε

where ε obeys the logistic distribution with Fε(x) = ex/(ex + 1)

I Probability P1 for the outcome Y = 1:

P1 = P (Y ∗(x) > 0) = Fε(β
′x) =

eβ
′x

eβ
′x + 1

I Formally, this is a normal linear regression model for the log of the
odds ratio P1/P0 = P1/(1− P1):

ŷ∗(x) = β′x = ln

(
P1

P0

)
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variable to be continuous (discuss!)

I Using model chaining with an unobservable intermediate continuous
variable Y ∗ allows one to model binary outcomes:

Y (x) =

{
1 Y ∗(x) > 0
0 otherwise,

Y ∗(x) = ŷ∗(x) + ε = β′x+ ε

where ε obeys the logistic distribution with Fε(x) = ex/(ex + 1)

I Probability P1 for the outcome Y = 1:

P1 = P (Y ∗(x) > 0) = Fε(β
′x) =

eβ
′x

eβ
′x + 1

I Formally, this is a normal linear regression model for the log of the
odds ratio P1/P0 = P1/(1− P1):
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Example: naive OLS-estimation (RP student interviews)

I Alternatives: i = 1: motorized and i = 2 (not)

I Intermediate variable estimated by percentaged choices:
y∗ = ln(f1/(1− f1))

I Model: Log. regression, ŷ∗(x1) = β0 + β1x1

I OLS Estimation: β0 = −0.58, β1 = 0.79
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Method consistent? added 5th data point with f=0.9999

I Same model: ŷ∗(x1) = β0 + β1x1

I New estimation: β0 = −3.12, β1 = 2.03

I Estimation would fail if f1 = 0 or =1 ⇒ real discrete-choice
model necessary!



Econometrics Master’s Course: Methods 4. Significance Tests 4.4. Logistic regression

Comparison: real Maximum-Likelihood (ML) estimation

I Model: Logit, Vi(x1) = β0δi1 + β1x1δi1, V2 = 0.

I Estimation: β0 = −0.50± 0.65, β1 = +0.71± 0.30
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Comparison: real ML estimation with added 5th data point

I Same logit model, Vi(x1) = β0δi1 + β1x1δi1, V2 = 0.

I New estimation: β0 = −0.55± 0.63, β1 = +0.75± 0.27
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