Lecture 04: Classical Inferential Statistics II: Significance Tests

4 Significance Tests
4.1 General Four-Step Procedure
4.1.1 Step 1: Chosing H₀: Type I and II errors
4.1.2 Steps 2 and 3: Test statistics
4.1.3 Steps 4: Decision
4.1.4 Step 4a: The *p*-value
4.2 Dependence on the True Parameter Value: Power Function

- 4.3 Model Selection Strategies
- 4.4 Logistic Regression

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- which has distinct rejection regions R(α) which are reached rarely (with a probability ≤ α) if H₀ but more often if H₁ = H
 ₀
- 3. Evaluate a realisation t_{data} of T from the data
- Check if t_{data} ∈ R(α). If yes, H₀ can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H₀: "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- ▶ which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$
- 3. Evaluate a realisation t_{data} of T from the data
- Check if t_{data} ∈ R(α). If yes, H₀ can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H₀: "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_i = \beta_{i0}$ (point hypothesis) or $\beta_i \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H_0^* of the null hypothesis (of course, $H_0^* = H_0$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown?

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_i = \beta_{i0}$ (point hypothesis) or $\beta_i \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H_0^* of the null hypothesis (of course, $H_0^* = H_0$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- \triangleright which has distinct rejection regions $R(\alpha)$ which are reached

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

▶ which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$

3. Evaluate a realisation t_{data} of T from the data

- 4. Check if $t_{data} \in R(\alpha)$. If yes, H_0 can be rejected at an error probability or significance level α . Otherwise, nothing can be said (mask example with H_0 : "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- ▶ which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$
- 3. Evaluate a realisation t_{data} of T from the data
- Check if t_{data} ∈ R(α). If yes, H₀ can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H₀: "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- ▶ which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$
- 3. Evaluate a realisation t_{data} of T from the data
- Check if t_{data} ∈ R(α). If yes, H₀ can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H₀: "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a test function or statistics T
 - whose distribution is known provided the parameters are at the margin H₀^{*} of the null hypothesis (of course, H₀^{*} = H₀ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- ▶ which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$
- 3. Evaluate a realisation t_{data} of T from the data
- Check if t_{data} ∈ R(α). If yes, H₀ can be rejected at an error probability or significance level α. Otherwise, nothing can be said (mask example with H₀: "mask useless").
- 4a Alternatively, calculate the *p*-value as the minimum α at which H_0 can be rejected.

4.1.1 Step 1: Choosing $\mathrm{H}_0{:}\xspace$ Type I and II errors

► A significance test reduces reality to a "binary in-binary out" setting.

4.1.1 Step 1: Choosing H_0 : Type I and II errors

A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result

4.1.1 Step 1: Choosing H_0 : Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the **type I** or α -error probability $P(H_0 \text{ rejected}|H_0) \leq \alpha$ in significance tests

TECHNISCHE UNIVERSITAT

4.1.1 Step 1: Choosing $\mathrm{H}_0{:}\xspace$ Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the **type I** or α -error probability $P(H_0 \text{ rejected}|H_0) \leq \alpha$ in significance tests
- Since the type II or β -error probability $P(H_0 \text{ not rejected}|\overline{H_0})$ is unknown, the more serious error type should be the α error

TECHNISCHE UNIVERSITAT

4.1.1 Step 1: Choosing H_0 : Type I and II errors

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the **type I** or α -error probability $P(H_0 \text{ rejected}|H_0) \leq \alpha$ in significance tests
- Since the type II or β -error probability $P(H_0 \text{ not rejected}|\overline{H_0})$ is unknown, the more serious error type should be the α error

Fundamental problem: I want $P(H_0|\text{rejected})$ and $P(H_0|\text{rejected})$ while I get control over $P(\text{rejected}|H_0) \leq P(\text{rejected}|H_0^*) \Rightarrow$ Bayesian statistics

4.1.2 Steps 2 and 3: Test statistics I

 (i) Testing parameters such as H₀: β_j = β_{j0} or β_j ≥ β_{j0} or β_j ≤ β_{j0}: The test function is the estimated deviation from H₀^{*} in units of the estimated error standard deviation. It is student-t distributed with #dataPoints- #parameters degrees of freedom (df):

$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} \sim T(n - 1 - J)$$

• (ii) Testing functions of parameters such as H_0 : $\beta_1/\beta_2 = 2$, ≤ 2 or ≥ 2 : Transform into a linear combination. Then, the normalized estimated deviation is student-t distributed under H_0^* . Here, at H_0^* , the linear combination is $b = \beta_1 - 2\beta_2 = 0$:

$$\hat{b} = \hat{\beta}_{1} - 2\hat{\beta}_{2},$$

$$\hat{V}(\hat{b}) = \hat{V}_{11} + 4\hat{V}_{22} - 4\hat{V}_{12},$$

$$T = \frac{\hat{b}}{\sqrt{\hat{V}(\hat{b})}} \sim T(n - 1 - J)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

4.1.2 Steps 2 and 3: Test statistics I

 (i) Testing parameters such as H₀: β_j = β_{j0} or β_j ≥ β_{j0} or β_j ≤ β_{j0}: The test function is the estimated deviation from H₀^{*} in units of the estimated error standard deviation. It is student-t distributed with #dataPoints- #parameters degrees of freedom (df):

$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} \sim T(n - 1 - J)$$

• (ii) Testing functions of parameters such as H_0 : $\beta_1/\beta_2 = 2$, ≤ 2 or ≥ 2 : Transform into a linear combination. Then, the normalized estimated deviation is student-t distributed under H_0^* . Here, at H_0^* , the linear combination is $b = \beta_1 - 2\beta_2 = 0$:

$$\hat{b} = \hat{\beta}_{1} - 2\hat{\beta}_{2},$$

$$\hat{V}(\hat{b}) = \hat{V}_{11} + 4\hat{V}_{22} - 4\hat{V}_{12},$$

$$T = \frac{\hat{b}}{\sqrt{\hat{V}(\hat{b})}} \sim T(n - 1 - J)$$

(ロ) (部) (モ) (モ) (モ) (ロ)

▶ (iii) Testing the correlation coefficient in an *xy* scatter plot:

$$\hat{\rho} = \frac{s_{xy}}{s_x s_y}, \quad H_0: \rho = 0, \quad T = \frac{\hat{\rho}}{\sqrt{1 - \hat{\rho}^2}} \sqrt{n - 2} \sim T(n - 2)$$

Derivation: $\rho = 0$ if, and only if, in a simple linear regression $y = \beta_0 + \beta_1 x + \epsilon$, the slope parameter $\beta_1 = 0$, so test for $\beta_1 = 0$: Under H_0 , the test statistics

$$T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} = \frac{s_{xy}}{\hat{\sigma} \ s_x} \sqrt{n} \sim T(n-2)$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^2=n(s_y^2-s_{xy}^2/s_x^2)/(n-2)$

• (iv) Test for the residual variance, H_0 : $\sigma^2 = \sigma_0^2$, $\sigma^2 \ge \sigma_0^2$, and $\sigma^2 \le \sigma_0^2$:

$$T = \frac{\hat{\sigma}^2}{\sigma_0^2} \ (n - 1 - J) \sim \chi^2 (n - 1 - J)$$

The one-parameter **chi-squared distribution with** m degrees of freedom $\chi^2(m) = \sum_{i=1}^{m} Z_i^2$ is the sum of squares of i.i.d. Gaussians. Its density is not symmetric, so we need to calculate both the α and $1 - \alpha$ quantiles

▶ (iii) Testing the correlation coefficient in an *xy* scatter plot:

$$\hat{\rho} = \frac{s_{xy}}{s_x s_y}, \quad H_0: \rho = 0, \quad T = \frac{\hat{\rho}}{\sqrt{1 - \hat{\rho}^2}} \sqrt{n - 2} \sim T(n - 2)$$

Derivation: $\rho = 0$ if, and only if, in a simple linear regression $y = \beta_0 + \beta_1 x + \epsilon$, the slope parameter $\beta_1 = 0$, so test for $\beta_1 = 0$: Under H_0 , the test statistics

$$T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} = \frac{s_{xy}}{\hat{\sigma} \ s_x} \sqrt{n} \sim T(n-2)$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^2 = n(s_y^2 - s_{xy}^2/s_x^2)/(n-2)$

• (iv) Test for the residual variance, H_0 : $\sigma^2 = \sigma_0^2$, $\sigma^2 \ge \sigma_0^2$, and $\sigma^2 \le \sigma_0^2$:

$$T = \frac{\hat{\sigma}^2}{\sigma_0^2} \ (n - 1 - J) \sim \chi^2 (n - 1 - J)$$

The one-parameter **chi-squared distribution with** m degrees of freedom $\chi^2(m) = \sum_{i=1}^{m} Z_i^2$ is the sum of squares of i.i.d. Gaussians. Its density is not symmetric, so we need to calculate both the α and $1 - \alpha$ quantiles

Test statistics II

▶ (iii) Testing the correlation coefficient in an *xy* scatter plot:

$$\hat{\rho} = \frac{s_{xy}}{s_x s_y}, \quad H_0: \rho = 0, \quad T = \frac{\hat{\rho}}{\sqrt{1 - \hat{\rho}^2}} \sqrt{n - 2} \sim T(n - 2)$$

Derivation: $\rho = 0$ if, and only if, in a simple linear regression $y = \beta_0 + \beta_1 x + \epsilon$, the slope parameter $\beta_1 = 0$, so test for $\beta_1 = 0$: Under H_0 , the test statistics

$$T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} = \frac{s_{xy}}{\hat{\sigma} \ s_x} \sqrt{n} \sim T(n-2)$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^2 = n(s_y^2 - s_{xy}^2/s_x^2)/(n-2)$

• (iv) Test for the residual variance, H_0 : $\sigma^2 = \sigma_0^2$, $\sigma^2 \ge \sigma_0^2$, and $\sigma^2 \le \sigma_0^2$:

$$T = \frac{\hat{\sigma}^2}{\sigma_0^2} \ (n - 1 - J) \sim \chi^2 (n - 1 - J)$$

The one-parameter chi-squared distribution with m degrees of freedom $\chi^2(m) = \sum_{i=1}^m Z_i^2$ is the sum of squares of i.i.d. Gaussians. Its density is not symmetric, so we need to calculate both the α and $1 - \alpha$ quantiles

 (v) Tests of simultaneous point null hypotheses, e.g., H₀: (β₁ = 0) AND (β₂ = 2) using the Fisher-F test:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

- S: SSE of the estimated full model with M = J + 1 parameters
 S₀: SSE of the estimated restrained model under H₀ with M₀ free parameters
- ▶ The Fisher-F distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with n numerator and d denominator degrees of freedom

? Argue that always $S_0 \geq S$

• (v) Tests of simultaneous point null hypotheses, e.g., H_0 : $(\beta_1 = 0)$ AND $(\beta_2 = 2)$ using the **Fisher-F test**:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

- S: SSE of the estimated full model with M = J + 1 parameters
 S₀: SSE of the estimated restrained model under H₀ with M₀ free parameters
- ▶ The **Fisher-F** distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with n numerator and d denominator degrees of freedom

? Argue that always $S_0 \ge S$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

• (v) Tests of simultaneous point null hypotheses, e.g., H_0 : $(\beta_1 = 0)$ AND $(\beta_2 = 2)$ using the **Fisher-F test**:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

 \blacktriangleright The Fisher-F distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with n numerator and d denominator degrees of freedom

? Argue that always
$$S_0 \ge S$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

• (v) Tests of simultaneous point null hypotheses, e.g., H_0 : $(\beta_1 = 0)$ AND $(\beta_2 = 2)$ using the **Fisher-F test**:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

 \blacktriangleright The Fisher-F distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with \boldsymbol{n} numerator and \boldsymbol{d} denominator degrees of freedom

? Argue that always $S_0 \ge S$

• (v) Tests of simultaneous point null hypotheses, e.g., H_0 : $(\beta_1 = 0)$ AND $(\beta_2 = 2)$ using the **Fisher-F test**:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

 \blacktriangleright The Fisher-F distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with \boldsymbol{n} numerator and \boldsymbol{d} denominator degrees of freedom

? Argue that always $S_0 \ge S$

With $M - M_0 = 1$, the F-test is equivalent to a parameter test for the parameter i in question:

Parameter test:
$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}(\hat{\beta}_j)}} \sim T(n-1-J)$$

▶ F-test: $T = (n - J - 1) \frac{S_0 - S}{S} \sim F(1, n - 1 - J)$

$$F(1,d) = \chi_1^2 / (\chi_d^2/d) = Z^2 / (\chi_d^2/d)$$

$$(n-J-1)\frac{S_0-S}{S} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}_{jj}}$$

With $M - M_0 = 1$, the F-test is equivalent to a parameter test for the parameter i in question:

► Parameter test:
$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}(\hat{\beta}_j)}} \sim T(n - 1 - J)$$

- ▶ F-test: $T = (n J 1) \frac{S_0 S}{S} \sim F(1, n 1 J)$
- ? Regarding the rhs., show following general relation between the student-t and the F(1,d) distributions: $F \sim F(1,d)$ and $T \sim T(d) \Rightarrow F = T^2$

$$F(1,d) = \chi_1^2 / (\chi_d^2/d) = Z^2 / (\chi_d^2/d)$$

$$(n-J-1)\frac{S_0-S}{S} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}_{jj}}$$

With $M - M_0 = 1$, the F-test is equivalent to a parameter test for the parameter i in question:

Parameter test:
$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}(\hat{\beta}_j)}} \sim T(n-1-J)$$

- ▶ F-test: $T = (n J 1) \frac{S_0 S}{S} \sim F(1, n 1 J)$
- ? Regarding the rhs., show following general relation between the student-t and the F(1,d) distributions: $F \sim F(1,d)$ and $T \sim T(d) \Rightarrow F = T^2$
- Ī By definition, Fisher's F is a ratio of χ^2 distributions. Furthermore, squares of standardnormal random variables Z are χ_1^2 distributed:

$$F(1,d) = \chi_1^2 / (\chi_d^2/d) = Z^2 / (\chi_d^2/d)$$

where $Z \sim N(0,1)$ and χ^2_d and Z are independent from each other. The definition of the student-t distribution is $T(d) = Z/\sqrt{\chi_d^2/d}$, so $F(1, d) = T_d^2$.

$$(n-J-1)\frac{S_0-S}{S} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}_{jj}}$$

With $M - M_0 = 1$, the F-test is equivalent to a parameter test for the parameter i in question:

- ▶ Parameter test: $T = \frac{\beta_j \beta_{j0}}{\sqrt{\hat{V}(\hat{\beta}_j)}} \sim T(n 1 J)$
- ▶ F-test: $T = (n J 1) \frac{S_0 S}{S} \sim F(1, n 1 J)$
- ? Regarding the rhs., show following general relation between the student-t and the F(1,d) distributions: $F \sim F(1,d)$ and $T \sim T(d) \Rightarrow F = T^2$
- Ī By definition, Fisher's F is a ratio of χ^2 distributions. Furthermore, squares of standardnormal random variables Z are χ_1^2 distributed:

$$F(1,d) = \chi_1^2 / (\chi_d^2/d) = Z^2 / (\chi_d^2/d)$$

where $Z \sim N(0,1)$ and χ^2_d and Z are independent from each other. The definition of the student-t distribution is $T(d) = Z/\sqrt{\chi_d^2/d}$, so $F(1, d) = T_d^2$.

One can show (difficult!) that following is exactly valid for the lhs.:

$$(n-J-1)\frac{S_0-S}{S} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}_{jj}}$$

where S_0 is the (minimum) SSE for the calibrated restrained model

4.1.3 Step 4: Decision

• The decision is based on the *rejection region*:

The **rejection region** $R^{(H_0)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_0^* , are most distant from H_0

Decision:

 H_0 is rejected at significance level α if $t_{\mathsf{data}} \in R^{(H_0)}(\alpha)$

- A good test statistics allows for a clear definition of what is meant by "distance to H₀" and brings, for a given α, the boundary of the rejection region as close to H₀^{*} as possible
- ▶ In contrast to T and the realisation t_{data} which only depends on H_0^* and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators =, \geq , \leq

4.1.3 Step 4: Decision

• The decision is based on the *rejection region*:

The **rejection region** $R^{(H_0)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_0^* , are most distant from H_0

Decision:

 H_0 is rejected at significance level α if $t_{\mathsf{data}} \in R^{(H_0)}(\alpha)$

- A good test statistics allows for a clear definition of what is meant by "distance to H₀" and brings, for a given α, the boundary of the rejection region as close to H₀^{*} as possible
- In contrast to T and the realisation t_{data} which only depends on H₀^{*} and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators =, ≥, ≤

4.1.3 Step 4: Decision

• The decision is based on the *rejection region*:

The **rejection region** $R^{(H_0)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_0^* , are most distant from H_0

Decision:

 H_0 is rejected at significance level α if $t_{data} \in R^{(H_0)}(\alpha)$

- A good test statistics allows for a clear definition of what is meant by "distance to H₀" and brings, for a given α, the boundary of the rejection region as close to H₀^{*} as possible
- ▶ In contrast to T and the realisation t_{data} which only depends on H_0^* and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators =, \geq , \leq

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

4.1.3 Step 4: Decision

• The decision is based on the *rejection region*:

The rejection region $R^{(H_0)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_0^* , are most distant from H_0

Decision:

 H_0 is rejected at significance level α if $t_{data} \in R^{(H_0)}(\alpha)$

- A good test statistics allows for a clear definition of what is meant by "distance to H₀" and brings, for a given α, the boundary of the rejection region as close to H₀^{*} as possible
- In contrast to T and the realisation t_{data} which only depends on H₀^{*} and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators =, ≥, ≤

1. Rejection region for H_0 : "<" or " \leq " (interval hypothesis)

 \blacktriangleright H_0 is rejected on the level α if

 $t_{\mathsf{data}} > t_{1-lpha}$

1. Rejection region for H_0 : "<" or " \leq " (interval hypothesis)

 \blacktriangleright H_0 is rejected on the level α if

$$t_{\mathsf{data}} > t_{1-\alpha}$$

2. Rejection region for H_0 : ">" or " \geq " (interval hypothesis)

\blacktriangleright H_0 is rejected on the level α if

 $t_{\mathsf{data}} < t_\alpha = -t_{1-\alpha}$

The equality sign is only valid for symmetric test statistics

2. Rejection region for H_0 : ">" or " \geq " (interval hypothesis)

 \blacktriangleright H_0 is rejected on the level α if

$$t_{\mathsf{data}} < t_\alpha = -t_{1-\alpha}$$

The equality sign is only valid for symmetric test statistics
2. Rejection region for H_0 : ">" or " \geq " (interval hypothesis)

• H_0 is rejected on the level α if

$$t_{\rm data} < t_\alpha = -t_{1-\alpha}$$

The equality sign is only valid for symmetric test statistics

3. Rejection region for H_0 : "=" (point hypothesis)

For symmetric test statistics, H_0 is rejected on the level α if

$|t_{\mathsf{data}}| > t_{1-\alpha/2}$

If the distribution is not symmetric (as the χ² distribution for the variance test), the definition of what is "most distant" is not unique. For simplicity, one assumes equal statistical weights to both sides:

 $\text{rejected} \quad \Leftrightarrow (t_{\mathsf{data}} < t_{\alpha/2}) \cup (t_{\mathsf{data}} > t_{1-\alpha/2})$

3. Rejection region for H_0 : "=" (point hypothesis)

For symmetric test statistics, H_0 is rejected on the level α if

$$|t_{\mathsf{data}}| > t_{1-\alpha/2}$$

If the distribution is not symmetric (as the χ² distribution for the variance test), the definition of what is "most distant" is not unique. For simplicity, one assumes equal statistical weights to both sides:

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix} 28.0 & -6.40 & -0.119 \\ -6.40 & 26.0 & -0.941 \\ -0.119 & -0.941 & 0.0397 \end{pmatrix}$$

? Formulate and test the null hypothesis at $\alpha = 5~\%$ that the stars do not matter

! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} \sim T(12 - 3)$, i.e. df=9 degrees of freedom, $t_{data} = 7.49, t_{0.975}^{(9)} = 2.26 < |t_{data}| \Rightarrow H_0$ rejected, stars matter

? Do people favour more stars (at $\alpha = 5 \%$)?

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix} 28.0 & -6.40 & -0.119 \\ -6.40 & 26.0 & -0.941 \\ -0.119 & -0.941 & 0.0397 \end{pmatrix}$$

? Formulate and test the null hypothesis at $\alpha=5\,\%$ that the stars do not matter

! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} \sim T(12 - 3)$, i.e. df=9 degrees of freedom, $t_{data} = 7.49$, $t_{0.975}^{(9)} = 2.26 < |t_{data}| \Rightarrow H_0$ rejected, stars matter

- ? Do people favour more stars (at $\alpha = 5\%$)?

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix} 28.0 & -6.40 & -0.119 \\ -6.40 & 26.0 & -0.941 \\ -0.119 & -0.941 & 0.0397 \end{pmatrix}$$

- ? Formulate and test the null hypothesis at $\alpha = 5~\%$ that the stars do not matter
- ! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} \sim T(12 3)$, i.e. df=9 degrees of freedom, $t_{data} = 7.49$, $t_{0.975}^{(9)} = 2.26 < |t_{data}| \Rightarrow H_0$ rejected, stars matter
- ? Do people favour more stars (at $\alpha = 5\%$)?
- ! $H_{02}: \beta_1 \leq = 0$ (use as H_0 what you want to reject!), interval test with same T and t_{data} as above, $t_{0.95}^{(9)} = 1.83 < t_{data} \Rightarrow H_{02}$ rejected, more stars are better

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix} 28.0 & -6.40 & -0.119 \\ -6.40 & 26.0 & -0.941 \\ -0.119 & -0.941 & 0.0397 \end{pmatrix}$$

- ? Formulate and test the null hypothesis at $\alpha = 5~\%$ that the stars do not matter
- ! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} \sim T(12 3)$, i.e. df=9 degrees of freedom, $t_{data} = 7.49$, $t_{0.975}^{(9)} = 2.26 < |t_{data}| \Rightarrow H_0$ rejected, stars matter
- ? Do people favour more stars (at $\alpha = 5\%$)?

! $H_{02}: \beta_1 \leq = 0$ (use as H_0 what you want to reject!), interval test with same T and t_{data} as above, $t_{0.95}^{(9)} = 1.83 < t_{data} \Rightarrow H_{02}$ rejected, more stars are better

The already well-known example for $y(\boldsymbol{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix} 28.0 & -6.40 & -0.119 \\ -6.40 & 26.0 & -0.941 \\ -0.119 & -0.941 & 0.0397 \end{pmatrix}$$

- ? Formulate and test the null hypothesis at $\alpha = 5~\%$ that the stars do not matter
- ! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} \sim T(12 3)$, i.e. df=9 degrees of freedom, $t_{data} = 7.49$, $t_{0.975}^{(9)} = 2.26 < |t_{data}| \Rightarrow H_0$ rejected, stars matter
- ? Do people favour more stars (at $\alpha = 5\%$)?
- ! $H_{02}: \beta_1 \leq = 0$ (use as H_0 what you want to reject!), interval test with same T and t_{data} as above, $t_{0.95}^{(9)} = 1.83 < t_{data} \Rightarrow H_{02}$ rejected, more stars are better

- ? Does each \in more per night decrease the occupancy by at most 1 %?
 - $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t_{0.95}^{(9)} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma = \beta_1 + 30\beta_2 \leq 0$

 $\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$ $\hat{V}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$

So, $t_{data} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1?$
- 1 Full model: $\hat{\beta} = (25.5, 38.2, -0.952)'$, $S(\hat{\beta}) = 498.2$; Reduced model with fixed $\beta_1 = 30$, $\beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0$; $\hat{\beta}_r = (49.0, 30, -1)'$, $S_0 = S(\hat{\beta}_r) = 1808$; $M - M_0 = 2$ df, n - M = 9 df, $T \sim F(2, 9)$, $t_{data} = 9/2$ $(S_0 - S)/S = 11.8 > f_{0.95}^{(2.9)} = 4.26 \Rightarrow H_0$ rejected

Example: modeling the demand for hotel rooms (ctned)

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- $H_{03}: eta_2 < -1$ (H_{03} is the complement event!),
 - $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t_{0.95}^{(9)} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma=\beta_1+30\beta_2 \leq 0$

 $\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$ $\hat{V}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.23$

So, $t_{data} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5 % \Rightarrow the risk of losing customers is less than 5 %

- ? Can it be simultaneously true that $eta_1=30$ and $eta_2=-1?$
- 1 Full model: $\hat{\beta} = (25.5, 38.2, -0.952)', S(\hat{\beta}) = 498.2;$ Reduced model with fixed $\beta_1 = 30, \beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0;$ $\hat{\beta}_r = (49.0, 30, -1)', S_0 = S(\hat{\beta}_r) = 1808; M - M_0 = 2 \text{ df}, n - M = 9 \text{ df},$ $T \sim F(2, 9), t_{\text{data}} = 9/2 (S_0 - S)/S = 11.8 > f_{0.95}^{(2,9)} = 4.26 \Rightarrow H_0$ rejected

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t^{(9)}_{0.95} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma=\beta_1+30\beta_2 \leq 0$

 $\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$ $\hat{V}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$

So, $t_{data} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5 % \Rightarrow the risk of losing customers is less than 5 %

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- 1 Full model: $\hat{\beta} = (25.5, 38.2, -0.952)'$, $S(\hat{\beta}) = 498.2$; Reduced model with fixed $\beta_1 = 30$, $\beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0$; $\hat{\beta}_r = (49.0, 30, -1)'$, $S_0 = S(\hat{\beta}_r) = 1808$; $M - M_0 = 2$ df, n - M = 9 df, $T \sim F(2, 9)$, $t_{data} = 9/2$ $(S_0 - S)/S = 11.8 > f_{0.95}^{(2,9)} = 4.26 \Rightarrow H_0$ rejected

Example: modeling the demand for hotel rooms (ctned)

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t^{(9)}_{0.95} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}:\beta_1\leq -30\beta_2$ or $\gamma=\beta_1+30\beta_2\leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{\gamma}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{data} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- I Full model: $\hat{\beta} = (25.5, 38.2, -0.952)', S(\hat{\beta}) = 498.2;$ Reduced model with fixed $\beta_1 = 30, \beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0;$ $\hat{\beta}_r = (49.0, 30, -1)', S_0 = S(\hat{\beta}_r) = 1808; M - M_0 = 2 \text{ df}, n - M = 9 \text{ df},$ $T \sim F(2, 9), t_{\text{dsta}} = 9/2 (S_0 - S)/S = 11.8 > f_{0.95}^{(2,9)} = 4.26 \Rightarrow H_0$ rejected

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t^{(9)}_{0.95} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma = \beta_1 + 30\beta_2 \leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{\gamma}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{\text{data}} = \hat{\gamma} / \sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $eta_1=30$ and $eta_2=-1?$
- 1 Full model: $\hat{\beta} = (25.5, 38.2, -0.952)', S(\hat{\beta}) = 498.2;$ Reduced model with fixed $\beta_1 = 30, \beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0;$ $\hat{\beta}_r = (49.0, 30, -1)', S_0 = S(\hat{\beta}_r) = 1808; M - M_0 = 2 \text{ df}, n - M = 9 \text{ df},$ $T \sim F(2, 9), t_{\text{data}} = 9/2 (S_0 - S)/S = 11.8 > f_{0.95}^{(2, 9)} = 4.26 \Rightarrow H_0 \text{ rejected}$

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t_{0.95}^{(9)} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma = \beta_1 + 30\beta_2 \leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{\gamma}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{\text{data}} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- $\begin{array}{l} \mbox{Full model: } \hat{\boldsymbol{\beta}} = (25.5, 38.2, -0.952)', \ S(\hat{\boldsymbol{\beta}}) = 498.2; \\ \mbox{Reduced model with fixed } \beta_1 = 30, \ \beta_2 = 1 \mbox{ leading to } \hat{\beta}_0 = 49.0; \\ \hat{\boldsymbol{\beta}}_r = (49.0, 30, -1)', \ S_0 = S(\hat{\boldsymbol{\beta}}_r) = 1808; \ M M_0 = 2 \mbox{ df}, \ n M = 9 \mbox{ df}, \\ T \sim F(2, 9), \ t_{\rm data} = 9/2 \ (S_0 S)/S = 11.8 > f_{0.95}^{(2, 9)} = 4.26 \Rightarrow H_0 \ \mbox{rejected} \end{array}$

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t^{(9)}_{0.95} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma = \beta_1 + 30\beta_2 \leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{\gamma}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{\text{data}} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- ! Full model: $\hat{\beta} = (25.5, 38.2, -0.952)', S(\hat{\beta}) = 498.2;$ Reduced model with fixed $\beta_1 = 30, \beta_2 = 1$ leading to $\hat{\beta}_0 = 49.0$: $\hat{\beta}_r = (49.0, 30, -1)', S_0 = S(\hat{\beta}_r) = 1808; M - M_0 = 2 df, n - M = 9 df,$ $T \sim F(2, 9), t_{data} = 9/2 (S_0 - S)/S = 11.8 > f_{0.95}^{(2,9)} = 4.26 \Rightarrow H_0$ rejected

- ? Does each \in more per night decrease the occupancy by at most 1 %?
- ! $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!), $t_{data} = (\hat{\beta}_2 + 1)/\sqrt{\hat{V}_{22}} = 0.24 \stackrel{!}{>} t^{(9)}_{0.95} = 1.83 \Rightarrow H_{03}$ not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers
- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma = \beta_1 + 30\beta_2 \leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{\gamma}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{\text{data}} = \hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})} = 4.20 > t_{0.95}^{(9)} = 1.83 \Rightarrow H_{04}$ rejected at 5% \Rightarrow the risk of losing customers is less than 5%

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- $\begin{array}{l} \mbox{Full model:} \ \hat{\beta} = (25.5, 38.2, -0.952)', \ S(\hat{\beta}) = 498.2; \\ \mbox{Reduced model with fixed } \beta_1 = 30, \ \beta_2 = 1 \mbox{ leading to } \hat{\beta}_0 = 49.0; \\ \hat{\beta}_r = (49.0, 30, -1)', \ S_0 = S(\hat{\beta}_r) = 1808; \ M M_0 = 2 \mbox{ df}, \ n M = 9 \mbox{ df}, \\ T \sim F(2, 9), \ t_{\rm data} = 9/2 \ (S_0 S)/S = 11.8 > f_{0.95}^{(2,9)} = 4.26 \Rightarrow H_0 \ \mbox{rejected} \\ \mbox{ cm} + 4 \mbox{ d} \Rightarrow 4 \ \mbox{ d} \Rightarrow 4 \ \mbox{ d} \Rightarrow 4 \ \mbox{ d} \Rightarrow 5 \ \mbo$

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- line Instead, one would like to know the *minimum* α for rejection

イロト (同) (ヨ) (ヨ) ヨ) の

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- \blacktriangleright Instead, one would like to know the *minimum* α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

イロト (同) (ヨ) (ヨ) ヨ) の

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- \blacktriangleright Instead, one would like to know the *minimum* α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region E_{data} contains all realisations of T that are further away from H_0 than t_{data} . Hence, t_{data} lies on the boundary of E_{data} Relation to the rejection region? p is defined such

▲□▶▲□▶▲□▶▲□▶ □ ● の

- Obviously, it is not very efficient to test H₀ for a fixed significance level α (one does not know *how significant* the result really is)
- Instead, one would like to know the *minimum* α for rejection (notice the *statistical reliability-sensitivity uncertainty relation*) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region E_{data} contains all realisations of T that are further away from H_0 than t_{data} . Hence, t_{data} lies on the boundary of E_{data} Relation to the rejection region? p is defined such that $E_{data} = R(p)$

p≥ 5%: not significant (no star at the value for β, sometimes a "+" if between 5% and 10%, e.g., β₁ = 4.2⁺)
p < 5%: significant (one star, e.g., β₁ = 4.2^{*})
p < 1%: very significant (two star, β₁ = 4.2^{**})
p < 0.001: highly significant (three stars, β₁ = 4.2^{***})

- Obviously, it is not very efficient to test H₀ for a fixed significance level α (one does not know *how significant* the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region $E_{\rm data}$ contains all realisations of T that are further away from H_0 than $t_{\rm data}$. Hence, $t_{\rm data}$ lies on the boundary of $E_{\rm data}$ Relation to the rejection region? p is defined such that $E_{\rm data}=R(p)$

p≥ 5%: not significant (no star at the value for β, sometimes a "+" if between 5% and 10%, e.g., β₁ = 4.2⁺)
p < 5%: significant (one star, e.g., β₁ = 4.2^{*})
p < 1%: very significant (two star, β₁ = 4.2^{**})
p < 0.001: highly significant (three stars, β₁ = 4.2^{***})

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- \blacktriangleright Instead, one would like to know the *minimum* α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region E_{data} contains all realisations of T that are further away from H_0 than t_{data} . Hence, t_{data} lies on the boundary of E_{data} Relation to the rejection region? p is defined such that $E_{data} = R(p)$

▶ $p \ge 5\%$: not significant (no star at the value for β , sometimes a "+" if between 5% and 10%, e.g., $\beta_1 = 4.2^+$) \triangleright p < 5%: significant (one star, e.g., $\beta_1 = 4.2^*$) ▶ p < 0.001: highly significant (three stars, $\beta_1 = 4.2^{***}$)

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- \blacktriangleright Instead, one would like to know the *minimum* α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region E_{data} contains all realisations of T that are further away from H_0 than t_{data} . Hence, t_{data} lies on the boundary of E_{data} Relation to the rejection region? p is defined such that $E_{data} = R(p)$

▶ $p \ge 5$ %: not significant (no star at the value for β , sometimes a "+" if between 5% and 10%, e.g., $\beta_1 = 4.2^+$) \triangleright p < 5%: significant (one star, e.g., $\beta_1 = 4.2^*$) \triangleright p < 1%: very significant (two star, $\beta_1 = 4.2^{**}$) ▶ p < 0.001: highly significant (three stars, $\beta_1 = 4.2^{***}$)

- \blacktriangleright Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- \blacktriangleright Instead, one would like to know the *minimum* α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the *p*-value.
- The most general definition is:

 $p = \mathsf{Prob}(T \in E_{\mathsf{data}} | H_0^*))$

where the extreme region E_{data} contains all realisations of T that are further away from H_0 than t_{data} . Hence, t_{data} lies on the boundary of E_{data} Relation to the rejection region? p is defined such that $E_{data} = R(p)$

▶ $p \ge 5\%$: not significant (no star at the value for β , sometimes a "+" if between 5 % and 10 %, e.g., $\beta_1 = 4.2^+$) \triangleright p < 5%: significant (one star, e.g., $\beta_1 = 4.2^*$) ▶ p < 1%: very significant (two star, $\beta_1 = 4.2^{**}$) ▶ p < 0.001: highly significant (three stars, $\beta_1 = 4.2^{***}$)

Calculating p for some basic tests

► Interval test
$$H_0: \beta \leq \beta_0$$
 or $\beta < \beta_0$
 $p = P(T > t_{data} | \beta = \beta_0) = 1 - F_T(t_{data})$

Interval test $H_0: \beta \ge \beta_0$ or $\beta > \beta_0$ $p = P(T < t_{data} | \beta = \beta_0) = F_T(t_{data})$

▶ Point test $H_0: \beta = \beta_0$ (symmetry of f_T assumed at the 3rd equality sign) $p = P((T > |t_{data}|) \cup (T < -|t_{data}|))$ $= (1 - F_T(|t_{data}|)) + F_T(-|t_{data}|)$ $= 1 - F_T(|t_{data}|) + 1 - F_T(|t_{data}|)$ $= 2(1 - F_T(|t_{data}|))$

Calculating p for some basic tests

► Interval test
$$H_0: \beta \leq \beta_0$$
 or $\beta < \beta_0$
 $p = P(T > t_{data} | \beta = \beta_0) = 1 - F_T(t_{data})$

Interval test
$$H_0: \beta \ge \beta_0$$
 or $\beta > \beta_0$
 $p = P(T < t_{\mathsf{data}} | \beta = \beta_0) = F_T(t_{\mathsf{data}})$

▶ Point test $H_0: \beta = \beta_0$ (symmetry of f_T assumed at the 3rd equality sign) $p = P((T > |t_{data}|) \cup (T < -|t_{data}|))$ $= (1 - F_T(|t_{data}|)) + F_T(-|t_{data}|)$ $= 1 - F_T(|t_{data}|) + 1 - F_T(|t_{data}|)$ $= 2(1 - F_T(|t_{data}|))$

Calculating p for some basic tests

► Interval test
$$H_0: \beta \leq \beta_0$$
 or $\beta < \beta_0$
 $p = P(T > t_{data} | \beta = \beta_0) = 1 - F_T(t_{data})$

Interval test
$$H_0: \beta \ge \beta_0$$
 or $\beta > \beta_0$
 $p = P(T < t_{data}|\beta = \beta_0) = F_T(t_{data})$

Point test H₀:
$$\beta = \beta_0$$
 (symmetry of f_T
assumed at the 3rd equality sign)
 $p = P((T > |t_{data}|) \cup (T < -|t_{data}|))$
 $= (1 - F_T(|t_{data}|)) + F_T(-|t_{data}|)$
 $= 1 - F_T(|t_{data}|) + 1 - F_T(|t_{data}|)$
 $= 2(1 - F_T(|t_{data}|))$

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

► H_{01} "stars do not matter": point hypothesis $\beta_1 = 0$ $t_{data} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{data}|) = 3.7E - 5^{***}$

• H_{02} "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{data} = 7.49, \ p = 1 - F_T^{(9)}(t_{data}) = 1.9E - 5^{***}$

► H_{03} " Δ occupancy $\leq -1\%$ per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{data} = 0.24, \ p = 1 - F_T^{(9)}(t_{data}) = 40\%$

- ► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{data} = 4.20, \ p = 1 - F_T^{(9)}(t_{data}) = 0.12 \%^{**}$
- ▶ H_{05} "star and price sensitivity simultaneously given": compound point hypothesis $(\beta_1 = 30) \cap (\beta_2 = -1)$ $t_{data} = 11.8$, $p = 1 - F_F^{(2,9)}(t_{data}) = 0.30 \%^{**}$

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

- ► H_{01} "stars do not matter": point hypothesis $\beta_1 = 0$ $t_{data} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{data}|) = 3.7E - 5^{***}$
- H_{02} "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{data} = 7.49, \ p = 1 - F_T^{(9)}(t_{data}) = 1.9E - 5^{***}$
- ► H_{03} " Δ occupancy $\leq -1\%$ per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{data} = 0.24, \ p = 1 - F_T^{(9)}(t_{data}) = 40\%$
- ► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{data} = 4.20, \ p = 1 - F_T^{(9)}(t_{data}) = 0.12 \%^{**}$
- ► H_{05} "star and price sensitivity simultaneously given": compound point hypothesis ($\beta_1 = 30$) \cap ($\beta_2 = -1$) $t_{data} = 11.8, \ p = 1 - F_F^{(2,9)}(t_{data}) = 0.30 \%^{**}$

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

- ► H_{01} "stars do not matter": point hypothesis $\beta_1 = 0$ $t_{data} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{data}|) = 3.7E - 5^{***}$
- H_{02} "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{data} = 7.49, \ p = 1 - F_T^{(9)}(t_{data}) = 1.9E - 5^{***}$

► H_{03} " Δ occupancy $\leq -1\%$ per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{data} = 0.24, \ p = 1 - F_T^{(9)}(t_{data}) = 40\%$

► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{data} = 4.20, \ p = 1 - F_T^{(9)}(t_{data}) = 0.12 \%^{**}$

▶ H_{05} "star and price sensitivity simultaneously given": compound point hypothesis ($\beta_1 = 30$) \cap ($\beta_2 = -1$) $t_{data} = 11.8, \ p = 1 - F_F^{(2,9)}(t_{data}) = 0.30 \%^{**}$

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

- ► H_{01} "stars do not matter": point hypothesis $\beta_1 = 0$ $t_{data} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{data}|) = 3.7E - 5^{***}$
- H_{02} "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{data} = 7.49, \ p = 1 - F_T^{(9)}(t_{data}) = 1.9E - 5^{***}$

► H_{03} " Δ occupancy $\leq -1\%$ per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{data} = 0.24, \ p = 1 - F_T^{(9)}(t_{data}) = 40\%$

► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{data} = 4.20, \ p = 1 - F_T^{(9)}(t_{data}) = 0.12 \%^{**}$

▶ H_{05} "star and price sensitivity simultaneously given": compound point hypothesis ($\beta_1 = 30$) \cap ($\beta_2 = -1$) $t_{data} = 11.8, \ p = 1 - F_F^{(2,9)}(t_{data}) = 0.30 \%^{**}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

- H_{01} "stars do not matter": point hypothesis $\beta_1 = 0$ $t_{data} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{data}|) = 3.7E - 5^{***}$
- H_{02} "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{data} = 7.49, \ p = 1 - F_T^{(9)}(t_{data}) = 1.9E - 5^{***}$
- ► H_{03} " Δ occupancy $\leq -1\%$ per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{data} = 0.24, \ p = 1 - F_T^{(9)}(t_{data}) = 40\%$
- ► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{data} = 4.20, \ p = 1 - F_T^{(9)}(t_{data}) = 0.12 \%^{**}$
- ► H_{05} "star and price sensitivity simultaneously given": compound point hypothesis ($\beta_1 = 30$) \cap ($\beta_2 = -1$) $t_{data} = 11.8, \ p = 1 - F_F^{(2,9)}(t_{data}) = 0.30 \%^{**}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → �!

- Turquoise lines: boundaries of the $\alpha = 5 \,\%$ -Cls of β_1 and β_2
- Black line: boundary of simple interval null hypothesis H_{03} : $\beta_2 \leq -1$ (t-test)
- ▶ Red boxes: boundary of the function intervall hypothesis H_{04} : $\gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)
- Black symbols: simultaneous point hypotheses (*F*-test) •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1), \quad \Delta: \quad H_{05}: (\beta_1 = 30) \cap (\beta_2 = -0.6), \quad A = 0$

き の

▶ Turquoise lines: boundaries of the $\alpha = 5$ %-CIs of β_1 and β_2

Black line: boundary of simple interval null hypothesis H_{03} : $\beta_2 \leq -1$ (t-test)

Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)

Black symbols: simultaneous point hypotheses (*F*-test) •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1), \quad \triangle: \quad H_{06}: (\beta_1 = 30) \cap (\beta_2 = -0.6);$

き の

- Turquoise lines: boundaries of the $\alpha = 5$ %-Cls of β_1 and β_2
- ▶ Black line: boundary of simple interval null hypothesis H_{03} : $\beta_2 \leq -1$ (t-test)
- ▶ Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)

Black symbols: simultaneous point hypotheses (*F*-test) •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1), \quad \triangle: \quad H_{06}: (\beta_1 = 30) \cap (\beta_2 = -0.6), \quad A = -0.6)$

き の

- Turquoise lines: boundaries of the $\alpha = 5$ %-CIs of β_1 and β_2
- ▶ Black line: boundary of simple interval null hypothesis H₀₃ : β₂ ≤ −1 (t-test)
- ▶ Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)

Black symbols: simultaneous point hypotheses (*F*-test) •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1), \quad \triangle: \quad H_{06}: (\beta_1 = 30) \cap (\beta_2 = -0.6), \quad A = -0.6)$

5

ъ.

Visualization

- Turquoise lines: boundaries of the $\alpha = 5$ %-Cls of β_1 and β_2
- ▶ Black line: boundary of simple interval null hypothesis H_{03} : $\beta_2 \leq -1$ (t-test)
- ▶ Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)
- Black symbols: simultaneous point hypotheses (F-test)
 - •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1), \quad \triangle: \quad H_{06}: (\beta_1 = 30) \cap (\beta_2 = -0.6).$

Econometrics Master's Course: Methods

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P(H_0^*) = 0$ exactly, so the tests and *p*-values *do not reflect reality*
- What happens for other values β ∉ H₀^{*}? This is quantified by following conditional probability called statistical power function:

$\pi_{\alpha}(\beta) = \mathsf{Pr}(\mathsf{test} \ \mathsf{rejected} \ \mathsf{at} \ \mathsf{error} \ \mathsf{probability} \ \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α . By definition, $\pi(\beta_0) = \alpha$ if $\beta_0 \in H_0^*$

4.2 Dependence on the True Parameter Value

Econometrics Master's Course: Methods

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P(H_0^*) = 0$ exactly, so the tests and *p*-values *do not reflect reality*
- What happens for other values β ∉ H₀^{*}? This is quantified by following conditional probability called statistical power function:

 $\pi_{\alpha}(\beta) = \mathsf{Pr}(\mathsf{test} \ \mathsf{rejected} \ \mathsf{at} \ \mathsf{error} \ \mathsf{probability} \ \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α . By definition, $\pi(\beta_0) = \alpha$ if $\beta_0 \in H_0^*$

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be *marginally* fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability P(H₀^{*}) = 0 exactly, so the tests and p-values do not reflect reality
- What happens for other values β ∉ H^{*}₀? This is quantified by following conditional probability called statistical power function:

$\pi_{\alpha}(\beta) = \Pr(\text{test rejected at error probability } \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α . By definition, $\pi(\beta_0) = \alpha$ if $\beta_0 \in H_0^*$

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability P(H₀^{*}) = 0 exactly, so the tests and p-values do not reflect reality
- What happens for other values β ∉ H^{*}₀? This is quantified by following conditional probability called statistical power function:

$\pi_{\alpha}(\beta) = \mathsf{Pr}(\mathsf{test rejected at error probability } \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α. By definition, π(β₀) = α if β₀ ∈ H₀^{*}

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability P(H₀^{*}) = 0 exactly, so the tests and p-values do not reflect reality
- What happens for other values β ∉ H^{*}₀? This is quantified by following conditional probability called statistical power function:

$\pi_{\alpha}(\beta) = \mathsf{Pr}(\mathsf{test rejected at error probability } \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test

Sensitivity and specificity depend on the assumed error probability α. By definition, π(β₀) = α if β₀ ∈ H^{*}₀

4.2 Dependence on the True Parameter Value

TECHNISCHE UNIVERSITAT Econometrics Master's Course: Methods

All statistical tests, including the *p*-values, are based on some *null* hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability P(H₀^{*}) = 0 exactly, so the tests and p-values do not reflect reality
- What happens for other values β ∉ H^{*}₀? This is quantified by following conditional probability called statistical power function:

 $\pi_{\alpha}(\beta) = \mathsf{Pr}(\mathsf{test rejected at error probability } \alpha|\beta)$

- If β ∉ H₀, then π(β) indicates the statistical power or specificity of a test and 1 − π(β) its probability for a type-II error
- If β ∈ H₀, then π(β) is the type-I (α) error and 1 − π(β) the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α. By definition, π(β₀) = α if β₀ ∈ H₀^{*}

Calculating the statistical power function

▶ If $\beta \neq \beta_0 \in H_0^*$, then the usual test function, e.g., $(\hat{\beta}_j - \beta_{j0})/\sqrt{\hat{V}_{jj}}$ does *no longer* obey a standard statistical distribution such as standardnormal or student-t

• However, $T = (\hat{\beta}_j - \beta_j) / \sqrt{\hat{V}_{jj}}$ does:

$$T = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} + \frac{\beta_{j0} - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} - \Delta T$$

► ⇒ The independent variable of the power function is the standardized difference $\Delta T = (\beta_j - \beta_{j0}) / \sqrt{\hat{V}_{jj}}$

Calculating the statistical power function

▶ If $\beta \neq \beta_0 \in H_0^*$, then the usual test function, e.g., $(\hat{\beta}_j - \beta_{j0})/\sqrt{\hat{V}_{jj}}$ does *no longer* obey a standard statistical distribution such as standardnormal or student-t

• However, $T = (\hat{\beta}_j - \beta_j) / \sqrt{\hat{V}_{jj}}$ does:

$$T = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} + \frac{\beta_{j0} - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} - \Delta T$$

► ⇒ The independent variable of the power function is the standardized difference $\Delta T = (\beta_j - \beta_{j0}) / \sqrt{\hat{V}_{jj}}$

Calculating the statistical power function

▶ If $\beta \neq \beta_0 \in H_0^*$, then the usual test function, e.g., $(\hat{\beta}_j - \beta_{j0})/\sqrt{\hat{V}_{jj}}$ does *no longer* obey a standard statistical distribution such as standardnormal or student-t

• However, $T = (\hat{\beta}_j - \beta_j) / \sqrt{\hat{V}_{jj}}$ does:

$$T = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} + \frac{\beta_{j0} - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} - \Delta T$$

► ⇒ The independent variable of the power function is the standardized difference $\Delta T = (\beta_j - \beta_{j0}) / \sqrt{\hat{V}_{jj}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の

$$\pi^{\leq}(\Delta T) \stackrel{\text{def rejection}}{=} P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

$$\begin{aligned} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} & P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} & P(T + \Delta T > t_{1-\alpha}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の

$$\pi^{\leq}(\Delta T) \stackrel{\text{def rejection}}{=} P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ \stackrel{\text{def }\Delta T}{=} P(T + \Delta T > t_{1-\alpha}) \\ = P(T > -\Delta T + t_{1-\alpha})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T > t_{1-\alpha}) \\ & = \quad P(T > -\Delta T + t_{1-\alpha}) \\ & = \quad 1 - P(T < -\Delta T + t_{1-\alpha}) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T > t_{1-\alpha}) \\ & = \quad P(T > -\Delta T + t_{1-\alpha}) \\ & = \quad 1 - P(T < -\Delta T + t_{1-\alpha}) \\ & \stackrel{\text{symm.}}{=} \quad P(T < \Delta T - t_{1-\alpha}) \end{split}$$

Example I: Interval test for < and \leq

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T > t_{1-\alpha}) \\ & = \quad P(T > -\Delta T + t_{1-\alpha}) \\ & = \quad 1 - P(T < -\Delta T + t_{1-\alpha}) \\ & \stackrel{\text{symm.}}{=} \quad P(T < \Delta T - t_{1-\alpha}) \\ & \stackrel{\text{def distr.}}{=} \quad \underbrace{F_T(\Delta T - t_{1-\alpha})} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

Example I: Interval test for < and <

,

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T > t_{1-\alpha}) \\ & = \quad P(T > -\Delta T + t_{1-\alpha}) \\ & = \quad 1 - P(T < -\Delta T + t_{1-\alpha}) \\ & \stackrel{\text{symm.}}{=} \quad P(T < \Delta T - t_{1-\alpha}) \\ & \stackrel{\text{def distr.}}{=} \quad \underbrace{F_T(\Delta T - t_{1-\alpha})} \end{split}$$

? Test this expression by calculating $\pi^{\leq}(0)$ and $\pi^{\prime\leq}(0)$

UNIVERSITAT

`

Example I: Interval test for < and \leq

,

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T > t_{1-\alpha}) \\ & = \quad P(T > -\Delta T + t_{1-\alpha}) \\ & = \quad 1 - P(T < -\Delta T + t_{1-\alpha}) \\ & \stackrel{\text{symm.}}{=} \quad P(T < \Delta T - t_{1-\alpha}) \\ & \stackrel{\text{def distr.}}{=} \quad \underline{F_T(\Delta T - t_{1-\alpha})} \end{split}$$

? Test this expression by calculating $\pi^{\leq}(0)$ and $\pi'^{\leq}(0)$! Just insert $\Delta T = 0$:

$$\pi^{\leq}(0) = F_T(-t_{1-\alpha})$$

$$= F_T(t_{\alpha})$$

$$\stackrel{\text{def quantile}}{=} \alpha \checkmark$$

$$\pi^{\prime \leq}(0) = f_T(-t_{1-\alpha}) > 0 \checkmark$$

Type I and II errors for "<" or " \leq "-tests as a function of the true value relative to H_0 , known variance

- The maximum type-I error probability of α occurs if β = β₀, i.e., at the boundary of H₀.
- The maximum type-II error probability of 1 α occurs if β is just outside of H₀.

Type I and II errors for "<" or " \leq "-tests as a function of the true value relative to H_0 , known variance

- The maximum type-I error probability of α occurs if β = β₀, i.e., at the boundary of H₀.
- The maximum type-II error probability of 1 − α occurs if β is just outside of H₀.

- 日本 - 4 日本 - 4 日本 - 日本

The same for unknown variance, df=2 degrees of freedom

• The increase with ΔT is steeper but $\pi(0) = \alpha$ is unchanged

Example II: Interval test for for > and \ge

$$\begin{split} \pi^{\geq}(\Delta T) & \stackrel{\text{def rejection}}{=} \quad P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} < t_\alpha\right) \\ & \stackrel{\text{def }\Delta T}{=} \quad P(T + \Delta T < t_\alpha) \\ & = \quad P(T < -\Delta T + t_\alpha) \\ & \stackrel{\text{def distr.}}{=} \quad \underline{F_T(t_\alpha - \Delta T)} \end{split}$$

- ? Test this expression by calculating $\pi^{\geq}(0)$ and $\pi'^{\geq}(0)$
- Just insert $\Delta T = 0$:

$$\pi^{\geq}(0) \stackrel{\text{def quantile}}{=} \alpha \checkmark$$

 $\pi^{\prime \geq}(0) = -f_T(0) < 0 \checkmark$

Type I and II errors for ">" or "≥"-tests, known variance

Again, the maximum type I and II error probabilities of α and 1 − α, respectively, are obtained if the true parameter(s) are at the boundary / very near outside of H₀.

The maximum type-I error probability is also known as significance level.

Type I and II errors for ">" or ">"-tests, known variance

- Again, the maximum type I and II error probabilities of α and $1-\alpha$, respectively, are obtained if the true parameter(s) are at the boundary / very near outside of H_0 .
- The maximum type-I error probability is also known as significance level.

The same for unknown variance, df=2 degrees of freedom

(ロ) (部) (モ) (モ) (モ) (ロ)

$$\pi^{\operatorname{eq}}(\Delta T) \stackrel{\text{def rejection}}{=} P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right)$$

$$\begin{aligned} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\mathrm{def rejection}}{=} & P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ & \stackrel{\mathrm{def }\Delta T}{=} & P(|T + \Delta T| > t_{1-\alpha/2}) \end{aligned}$$

$$\begin{aligned} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\text{def rejection}}{=} & P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ & \stackrel{\text{def } \Delta T}{=} & P(|T + \Delta T| > t_{1-\alpha/2}) \\ & = & P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \end{aligned}$$

$$\begin{aligned} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\mathrm{def \ rejection}}{=} & P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ & \stackrel{\mathrm{def \ }\Delta T}{=} & P(|T + \Delta T| > t_{1-\alpha/2}) \\ & = & P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & = & 1 - P(T + \Delta T \le t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \end{aligned}$$

$$\begin{split} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\mathrm{def \ rejection}}{=} \quad P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ & \stackrel{\mathrm{def \ }\Delta T}{=} \quad P(|T + \Delta T| > t_{1-\alpha/2}) \\ & = \quad P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & = \quad 1 - P(T + \Delta T \le t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & \stackrel{\mathrm{def \ }\mathrm{distr.}}{=} \quad 1 - F_T(t_{1-\alpha/2} - \Delta T) + F_T(-t_{1-\alpha/2} - \Delta T) \end{split}$$

$$\begin{aligned} \pi^{\,\mathrm{eq}}(\Delta T) &\stackrel{\mathrm{def \ rejection}}{=} \quad P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ &\stackrel{\mathrm{def \ }\Delta T}{=} \quad P(|T + \Delta T| > t_{1-\alpha/2}) \\ &= \quad P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ &= \quad 1 - P(T + \Delta T \le t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ &\stackrel{\mathrm{def \ }\mathrm{distr.}}{=} \quad 1 - F_T(t_{1-\alpha/2} - \Delta T) + F_T(-t_{1-\alpha/2} - \Delta T) \\ &\stackrel{\mathrm{symm.}}{=} \quad \underline{2 - F_T(t_{1-\alpha/2} - \Delta T) - F_T(t_{1-\alpha/2} + \Delta T)} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

Example III: Point test for "="

$$\begin{aligned} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\mathrm{def rejection}}{=} & P\left(\left| \frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}} \right| > t_{1-\alpha/2} \right) \\ & \stackrel{\mathrm{def }\Delta T}{=} & P(|T + \Delta T| > t_{1-\alpha/2}) \\ & = & P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & = & 1 - P(T + \Delta T \le t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & \stackrel{\mathrm{def \ distr.}}{=} & 1 - F_T(t_{1-\alpha/2} - \Delta T) + F_T(-t_{1-\alpha/2} - \Delta T) \\ & \stackrel{\mathrm{symm.}}{=} & \underline{2 - F_T(t_{1-\alpha/2} - \Delta T) - F_T(t_{1-\alpha/2} + \Delta T)} \end{aligned}$$

? Test this expression by calculating $\pi^{\leq}(0)$! Just insert $\Delta T = 0$:

$$\pi^{eq}(0) = 2 - (1 - \alpha/2) - (1 - \alpha/2) = \alpha$$

Type I and II errors for two-sided (point-)tests (unkown variance, df=2)

Econometrics Master's Course: Methods

Since H₀ is a point set here, the type-I error probability is always given by α ("significance level")

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (why?)
- However, the risk of overfitting increases. In the words of John Neumann, With four parameters I can fit in elephant, and with Contract hake him wiggle is trunk.
- Overlitted models do not validate and can make neither statements nor predictions.
- $\triangleright \Rightarrow$ we need selection criteria taking care of

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (why?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.
- ► ⇒ we need selection criteria taking care of overfitting!

4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (why?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.

► ⇒ we need selection criteria taking care of overfitting!
4.3 Model Selection Strategies Problem Statement

- With every additional parameter, the fit quality in terms of the SSE becomes better (why?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.
- ➤ ⇒ we need selection criteria taking care of overfitting!

Model selection: some standard criteria ▶ (1) Adjusted R²:

$$\bar{R}^2 = 1 - \frac{n-1}{n-J-1} (1-R^2), \quad R^2 = 1 - \frac{S}{S_0},$$

 $S = SSE(calibr. full model), S_0 = SSE(calibr. constant-only model).$

(2) Akaike information criterion AIC:

$$\mathsf{AIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{2}{n},$$

(3) Bayes' Information criterion BIC:

$$\mathsf{BIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{\ln n}{n} \, .$$

Model selection: some standard criteria ▶ (1) Adjusted R²:

$$\bar{R}^2 = 1 - \frac{n-1}{n-J-1} (1-R^2), \quad R^2 = 1 - \frac{S}{S_0},$$

 $S = SSE(calibr. full model), S_0 = SSE(calibr. constant-only model).$

(2) Akaike information criterion AIC:

$$\mathsf{AIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{2}{n},$$

► (3) Bayes' Information criterion BIC:

$$\mathsf{BIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{\ln n}{n} \, .$$

Model selection: some standard criteria ▶ (1) Adjusted R²:

$$\bar{R}^2 = 1 - \frac{n-1}{n-J-1} (1-R^2), \quad R^2 = 1 - \frac{S}{S_0},$$

 $S = SSE(calibr. full model), S_0 = SSE(calibr. constant-only model).$

(2) Akaike information criterion AIC:

$$\mathsf{AIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{2}{n},$$

(3) Bayes' Information criterion BIC:

$$\mathsf{BIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \, \frac{\ln n}{n} \, .$$

Notice that the descriptive $\hat{\sigma}^2_{\text{descr}} = S/n$ instead of the unbiased $\hat{\sigma}^2 = S/(n-1-J)$ are assumed when defining AIC and BIC.

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate R², AIC, or BIC for all 2^J combinations of these factors (a given factor is either contained or not) by *brute force*).
- The best model is that maximizing \overline{R}^2 or minimizing AIC or BIC.
- Since AIC and also R² penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the *brute-force* approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
 - **Top-down approach**: Start with all the *J* factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \overline{R}^2 / decrease in AIC or BIC. Stop if there is no further improvement.
 - Bottom-up approach: Start with the constant-only model y = β₀ and successively add factors until there is no further improvement.
 - Standard statistics packages contain all of these strategies.

(ロト (個) (目) (目) (目) (目) の

Model selection: Strategy à la "Occam's Razor"

Identify J possibly relevant exogenous factors (the constant is always included) and calculate R², AIC, or BIC for all 2^J combinations of these factors (a given factor is either contained or not) by *brute force*).

• The best model is that maximizing \bar{R}^2 or minimizing AIC or BIC.

- ► Since AIC and also R² penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the *brute-force* approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
 - **Top-down approach**: Start with all the *J* factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \overline{R}^2 / decrease in AIC or BIC. Stop if there is no further improvement.
 - Bottom-up approach: Start with the constant-only model y = β₀ and successively add factors until there is no further improvement.
 - Standard statistics packages contain all of these strategies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ●

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate R², AIC, or BIC for all 2^J combinations of these factors (a given factor is either contained or not) by *brute force*).
- The best model is that maximizing \bar{R}^2 or minimizing AIC or BIC.
- Since AIC and also R² penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the *brute-force* approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
 - **Top-down approach**: Start with all the *J* factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \overline{R}^2 / decrease in AIC or BIC. Stop if there is no further improvement.
 - Bottom-up approach: Start with the constant-only model y = β₀ and successively add factors until there is no further improvement.
- Standard statistics packages contain all of these strategies.

・ロト・日本 モト・モト・ ヨーの

Model selection: Strategy à la "Occam's Razor"

- Identify J possibly relevant exogenous factors (the constant is always included) and calculate R², AIC, or BIC for all 2^J combinations of these factors (a given factor is either contained or not) by *brute force*).
- The best model is that maximizing \bar{R}^2 or minimizing AIC or BIC.
- ▶ Since AIC and also \bar{R}^2 penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the *brute-force* approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
 - **Top-down approach**: Start with all the *J* factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \overline{R}^2 / decrease in AIC or BIC. Stop if there is no further improvement.
 - Bottom-up approach: Start with the constant-only model y = β₀ and successively add factors until there is no further improvement.
- Standard statistics packages contain all of these strategies.

Normal linear models of the form Y = β'x + ε require the endogenous variable to be continuous (discuss!)

Using model chaining with an unobservable intermediate continuous variable Y* allows one to model binary outcomes:

$$Y(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & Y^*(\boldsymbol{x}) > 0 \\ 0 & \text{otherwise,} \end{array} \right. Y^*(\boldsymbol{x}) = \hat{y}^*(\boldsymbol{x}) + \epsilon = \boldsymbol{\beta}' \boldsymbol{x} + \epsilon$$

where ϵ obeys the **logistic distribution** with $F_{\epsilon}(x) = e^{x}/(e^{x} + 1)$ Probability P_{1} for the outcome Y = 1:

$$P_1 = P(Y^*(x) > 0) = F_{\epsilon}(\beta' x) = \frac{e^{\beta' x}}{e^{\beta' x} + 1}$$

► Formally, this is a normal linear regression model for the log of the odds ratio P₁/P₀ = P1/(1 - P₁):

$$\hat{y}^*(\boldsymbol{x}) = \boldsymbol{\beta}' \boldsymbol{x} = \ln\left(\frac{P_1}{P_0}\right)$$

- Normal linear models of the form Y = β'x + ε require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y* allows one to model binary outcomes:

$$Y(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & Y^*(\boldsymbol{x}) > 0 \\ 0 & \text{otherwise,} \end{array} \right. Y^*(\boldsymbol{x}) = \hat{y}^*(\boldsymbol{x}) + \epsilon = \boldsymbol{\beta}' \boldsymbol{x} + \epsilon$$

where ϵ obeys the logistic distribution with $F_{\epsilon}(x) = e^x/(e^x + 1)$ Probability P_1 for the outcome Y = 1:

$$P_1 = P(Y^*(x) > 0) = F_{\epsilon}(\beta' x) = \frac{e^{\beta' x}}{e^{\beta' x} + 1}$$

► Formally, this is a normal linear regression model for the log of the odds ratio P₁/P₀ = P1/(1 - P₁):

$$\hat{y}^*(\boldsymbol{x}) = \boldsymbol{\beta}' \boldsymbol{x} = \ln\left(\frac{P_1}{P_0}\right)$$

- Normal linear models of the form Y = β'x + ε require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y* allows one to model binary outcomes:

$$Y(\boldsymbol{x}) = \begin{cases} 1 & Y^*(\boldsymbol{x}) > 0 \\ 0 & \text{otherwise,} \end{cases} \quad Y^*(\boldsymbol{x}) = \hat{y}^*(\boldsymbol{x}) + \epsilon = \boldsymbol{\beta}' \boldsymbol{x} + \epsilon$$

where ϵ obeys the logistic distribution with $F_{\epsilon}(x) = e^x/(e^x + 1)$ Probability P_1 for the outcome Y = 1:

$$P_1 = P(Y^*(\boldsymbol{x}) > 0) = F_{\epsilon}(\boldsymbol{\beta}'\boldsymbol{x}) = \frac{e^{\boldsymbol{\beta}'\boldsymbol{x}}}{e^{\boldsymbol{\beta}'\boldsymbol{x}} + 1}$$

Formally, this is a normal linear regression model for the log of the odds ratio $P_1/P_0 = P1/(1-P_1)$:

$$\hat{y}^*(\boldsymbol{x}) = \boldsymbol{\beta}' \boldsymbol{x} = \ln\left(\frac{P_1}{P_0}\right)$$

- Normal linear models of the form Y = β'x + ε require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y* allows one to model binary outcomes:

$$Y(\boldsymbol{x}) = \begin{cases} 1 & Y^*(\boldsymbol{x}) > 0 \\ 0 & \text{otherwise,} \end{cases} \quad Y^*(\boldsymbol{x}) = \hat{y}^*(\boldsymbol{x}) + \epsilon = \boldsymbol{\beta}' \boldsymbol{x} + \epsilon$$

where ϵ obeys the **logistic distribution** with $F_{\epsilon}(x) = e^x/(e^x + 1)$ Probability P_1 for the outcome Y = 1:

$$P_1 = P(Y^*(\boldsymbol{x}) > 0) = F_{\epsilon}(\boldsymbol{\beta}'\boldsymbol{x}) = \frac{e^{\boldsymbol{\beta}'\boldsymbol{x}}}{e^{\boldsymbol{\beta}'\boldsymbol{x}} + 1}$$

Formally, this is a normal linear regression model for the log of the odds ratio $P_1/P_0 = P1/(1 - P_1)$:

$$\hat{y}^{*}(\boldsymbol{x}) = \boldsymbol{\beta}' \boldsymbol{x} = \ln\left(\frac{P_{1}}{P_{0}}\right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の

Example: naive OLS-estimation (RP student interviews)

- Alternatives: i = 1: motorized and i = 2 (not)
- Intermediate variable estimated by percentaged choices: $y^* = \ln(f_1/(1-f_1))$
- Model: Log. regression, $\hat{y}^*(x_1) = \beta_0 + \beta_1 x_1$
- OLS Estimation: $\beta_0 = -0.58$, $\beta_1 = 0.79$

Method consistent? added 5th data point with f=0.9999

- Same model: $\hat{y}^*(x_1) = \beta_0 + \beta_1 x_1$
- New estimation: $\beta_0 = -3.12$, $\beta_1 = 2.03$
- ► Estimation would fail if f₁ = 0 or =1 ⇒ real discrete-choice model necessary!

Comparison: real Maximum-Likelihood (ML) estimation

• Model: Logit, $V_i(x_1) = \beta_0 \delta_{i1} + \beta_1 x_1 \delta_{i1}$, $V_2 = 0$.

• Estimation: $\beta_0 = -0.50 \pm 0.65$, $\beta_1 = +0.71 \pm 0.30$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣・今

Comparison: real ML estimation with added 5th data point

Same logit model, $V_i(x_1) = \beta_0 \delta_{i1} + \beta_1 x_1 \delta_{i1}, V_2 = 0.$

• New estimation: $\beta_0 = -0.55 \pm 0.63, \ \beta_1 = +0.75 \pm 0.27$