Lecture 04: Classical Inferential Statistics II: Significance Tests

- 4 Significance Tests
- 4.1 General Four-Step Procedure
 - 4.1.1 Step 1: Chosing H_0 : Type I and II errors
 - 4.1.2 Steps 2 and 3: Test statistics
 - 4.1.3 Steps 4: Decision
 - **4.1.4** Step **4a**: The *p*-value 2
- 4.2 Dependence on the True Parameter Value: Power Function
- 4.3 Model Selection Strategies
- 4.4 Logistic Regression

4. Significance Tests

4.1 General Four-Step Procedure

- 1. Formulate a **null hypothesis** H_0 such that their rejection gives insight, e.g. $\beta_j = \beta_{j0}$ (point hypothesis) or $\beta_j \leq \beta_0$ (interval hypothesis): Notice: One cannot confirm H_0
- 2. Select a **test function** or **statistics** T
 - whose distribution is known provided the parameters are at the margin H_0^* of the null hypothesis (of course, $H_0^* = H_0$ for a point null hypothesis)

What if the estimator has a known distribution but the variance is unknown? Test function in units of the estimated standard deviation

- which has distinct rejection regions $R(\alpha)$ which are reached rarely (with a probability $\leq \alpha$) if H_0 but more often if $H_1 = \overline{H_0}$
- 3. Evaluate a realisation t_{data} of T from the data
- 4. Check if $t_{\text{data}} \in R(\alpha)$. If yes, H_0 can be rejected at an error probability or **significance level** α . Otherwise, *nothing can be said* (mask example with H_0 : "mask useless").
- 4a Alternatively, calculate the p-value as the minimum α at which H_0 can be rejected.

4.1.1 Step 1: Choosing H_0 : Type I and II errors

H ₀ not rejected		H ₀ rejected
H ₀ is true	/	Type I error
H ₀ is not true	Type II error	/

- A significance test reduces reality to a "binary in-binary out" setting. There are two combinations corresponding to a correct test result
- We can control the **type I** or α -error probability $P(H_0 \text{ rejected}|H_0) \leq \alpha$ in **significance tests**
- ▶ Since the **type II** or β -error probability $P(H_0 \text{ not rejected}|\overline{H_0})$ is unknown, the more serious error type should be the α error
 - Fundamental problem: I want $P(H_0|\text{rejected})$ and $P(H_0|\text{rejected})$ while I get control over $P(\text{rejected}|H_0) \leq P(\text{rejected}|H_0^*) \Rightarrow$ Bayesian statistics

4.1.2 Steps 2 and 3: Test statistics I

• (i) Testing parameters such as H_0 : $\beta_j = \beta_{j0}$ or $\beta_j \geq \beta_{j0}$ or $\beta_j \leq \beta_{j0}$: The test function is the estimated deviation from H_0^* in units of the estimated error standard deviation. It is **student-t** distributed with #dataPoints- #parameters **degrees of freedom (df)**:

$$T = \frac{\beta_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} \sim T(n - 1 - J)$$

(ii) Testing functions of parameters such as H_0 : $\beta_1/\beta_2=2$, ≤ 2 or ≥ 2 : Transform into a linear combination. Then, the normalized estimated deviation is student-t distributed under H_0^* . Here, at H_0^* , the linear combination is $b=\beta_1-2\beta_2=0$:

$$\hat{b} = \hat{\beta}_1 - 2\hat{\beta}_2,$$

$$\hat{V}(\hat{b}) = \hat{V}_{11} + 4\hat{V}_{22} - 4\hat{V}_{12},$$

$$T = \frac{\hat{b}}{\sqrt{\hat{V}(\hat{b})}} \sim T(n-1-J)$$

Test statistics II

ightharpoonup (iii) Testing the correlation coefficient in an xy scatter plot:

$$\hat{\rho} = \frac{s_{xy}}{s_x s_y}, \quad H_0: \rho = 0, \quad T = \frac{\hat{\rho}}{\sqrt{1 - \hat{\rho}^2}} \sqrt{n - 2} \sim T(n - 2)$$

Derivation: $\rho=0$ if, and only if, in a simple linear regression $y=\beta_0+\beta_1x+\epsilon$, the slope parameter $\beta_1=0$, so test for $\beta_1=0$: Under H_0 , the test statistics

$$T = \hat{\beta}_1 / \sqrt{\hat{V}_{11}} = \frac{s_{xy}}{\hat{\sigma} s_x} \sqrt{n} \sim T(n-2)$$

Now insert $\hat{\sigma}$ which can, in the simple-regression case, be explicitely calculated: $\hat{\sigma}^2=n(s_y^2-s_{xy}^2/s_x^2)/(n-2)$

• (iv) Test for the residual variance, H_0 : $\sigma^2 = \sigma_0^2$, $\sigma^2 \ge \sigma_0^2$, and $\sigma^2 \le \sigma_0^2$:

$$T = \frac{\hat{\sigma}^2}{\sigma_0^2} (n - 1 - J) \sim \chi^2 (n - 1 - J)$$

The one-parameter chi-squared distribution with m degrees of freedom $\chi^2(m)=\sum_{i=1}^m Z_i^2$ is the sum of squares of i.i.d. Gaussians. Its density is not symmetric, so we need to calculate both the α and $1-\alpha$ quantiles

Test statistics III

• (v) Tests of simultaneous point null hypotheses, e.g., H_0 : $(\beta_1 = 0)$ AND $(\beta_2 = 2)$ using the **Fisher-F test**:

$$T = \frac{(S_0 - S)/(M - M_0)}{S/(n - M)} \sim F(M - M_0, n - M)$$

- ▶ S: SSE of the estimated full model with M = J + 1 parameters
- ▶ S_0 : SSE of the estimated restrained model under H_0 with M_0 free parameters
- ▶ The Fisher-F distribution is essentially the ratio of two independent χ^2 distributed random variables,

$$F(n,d) = \frac{\chi_n^2/n}{\chi_d^2/d},$$

with n numerator and d denominator degrees of freedom

? Argue that always $S_0 \ge S$

TECHNISCHI UNIVERSITA DRESOEN

Equivalence of the F and T-tests for one parameter

With $M-M_0=1$, the F-test is equivalent to a parameter test for the parameter j in question:

- Parameter test: $T = \frac{\beta_j \beta_{j0}}{\sqrt{\hat{V}(\hat{\beta}_j)}} \sim T(n-1-J)$
- ▶ F-test: $T = (n J 1) \frac{S_0 S}{S} \sim F(1, n 1 J)$
- ? Regarding the rhs., show following general relation between the student-t and the F(1,d) distributions: $F \sim F(1,d)$ and $T \sim T(d) \Rightarrow F = T^2$
- By definition, Fisher's F is a ratio of χ^2 distributions. Furthermore, squares of standardnormal random variables Z are χ^2_1 distributed:

$$F(1,d) = \chi_1^2/(\chi_d^2/d) = Z^2/(\chi_d^2/d)$$

where $Z\sim N(0,1)$ and χ^2_d and Z are independent from each other. The definition of the student-t distribution is $T(d)=Z/\sqrt{\chi^2_d/d}$, so $F(1,d)=T^2_d$.

▶ One can show (difficult!) that following is exactly valid for the lhs.:

$$(n-J-1)\frac{S_0-S}{S} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_{j0})^2}{\hat{V}_{ij}}$$

where S_0 is the (minimum) SSE for the calibrated restrained model

4.1.3 Step 4: Decision

► The decision is based on the *rejection region*:

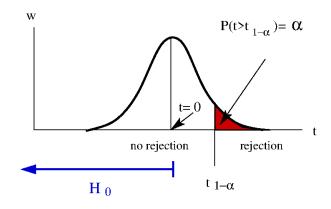
The **rejection region** $R^{(H_0)}(\alpha)$ contains the fraction α of all realisations t of the test statistics T which, under H_0^* , are most distant from H_0

Decision:

 H_0 is rejected at significance level α if $t_{\text{data}} \in R^{(H_0)}(\alpha)$

- ▶ A good test statistics allows for a clear definition of what is meant by "distance to H_0 " and brings, for a given α , the boundary of the rejection region as close to H_0^* as possible
- In contrast to T and the realisation $t_{\rm data}$ which only depends on H_0^* and therefore is the same for point and interval hypotheses of the same kind, the rejection region is different for the different comparison operators =, >, <

1. Rejection region for H_0 : "<" or " \leq " (interval hypothesis)

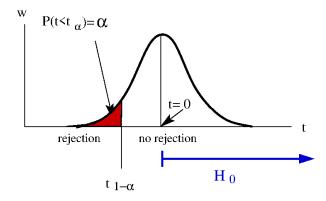


 $ightharpoonup H_0$ is rejected on the level α if

 $t_{\sf data} > t_{1-lpha}$

TECHNISCHE UNIVERSITÄT DRESOEN

2. Rejection region for H_0 : ">" or " \geq " (interval hypothesis)



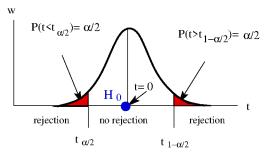
▶ H_0 is rejected on the level α if

$$t_{\mathsf{data}} < t_{\alpha} = -t_{1-\alpha}$$

▶ The equality sign is only valid for symmetric test statistics

UNIVERSITAT DRESDEN

3. Rejection region for H_0 : "=" (point hypothesis)



 \blacktriangleright For symmetric test statistics, H_0 is rejected on the level α if

$$|t_{\mathsf{data}}| > t_{1-\alpha/2}$$

If the distribution is not symmetric (as the χ^2 distribution for the variance test), the definition of what is "most distant" is not unique. For simplicity, one assumes equal statistical weights to both sides:

rejected
$$\Leftrightarrow (t_{\mathsf{data}} < t_{\alpha/2}) \cup (t_{\mathsf{data}} > t_{1-\alpha/2})$$

TECHNISCHE UNIVERSITÄT DRESDEN

Example: modeling the demand for hotel rooms

The already well-known example for $y(m{x})$: hotel room occupancy [%]

$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price [\in /night],

$$\hat{\beta}_0 = 25.5, \quad \hat{\beta}_1 = 38.2, \quad \hat{\beta}_2 = -0.952$$

and

$$\hat{\mathbf{V}} = \begin{pmatrix}
28.0 & -6.40 & -0.119 \\
-6.40 & 26.0 & -0.941 \\
-0.119 & -0.941 & 0.0397
\end{pmatrix}$$

- ? Formulate and test the null hypothesis at $\alpha=5\,\%$ that the stars do not matter
- ! $H_{01}: \beta_1 = 0$, point t-test with $T = \hat{\beta}_1/\sqrt{\hat{V}_{11}} \sim T(12-3)$, i.e. df=9 degrees of freedom, $t_{\text{data}} = 7.49$, $t_{0.975}^{(9)} = 2.26 < |t_{\text{data}}| \Rightarrow H_0$ rejected, stars matter
- ? Do people favour more stars (at $\alpha = 5\%$)?
- ! $H_{02}: \beta_1 <= 0$ (use as H_0 what you want to reject!), interval test with same T and $t_{\rm data}$ as above, $t_{0.95}^{(9)} = 1.83 < t_{\rm data} \Rightarrow H_{02}$ rejected, more stars are better

Example: modeling the demand for hotel rooms (ctned)

- ? Does each \in more per night decrease the occupancy by at most 1%?
- $H_{03}: \beta_2 < -1$ (H_{03} is the complement event!),

$$t_{\rm data}=(\hat{eta}_2+1)/\sqrt{\hat{V}_{22}}=0.24\stackrel{!}{>}t_{0.95}^{(9)}=1.83\Rightarrow H_{03}$$
 not rejected \Rightarrow the hotel manager might risk losing more than one percent point of customers

- ? Is it worth renovating my hotel thereby gaining one star so that I can ask for 30 € more per night without losing guests?
- ! Again, define the complement event as $H_{04}: \beta_1 \leq -30\beta_2$ or $\gamma=\beta_1+30\beta_2 \leq 0$

$$\hat{\gamma} = \hat{\beta}_1 + 30\hat{\beta}_2 = 9.63,$$

$$\hat{V}(\hat{\gamma}) = \hat{V}_{11} + 900\hat{V}_{22} + 2 * 1 * 30\hat{V}_{12} = 5.27$$

So, $t_{\rm data}=\hat{\gamma}/\sqrt{\hat{V}(\hat{\gamma})}=4.20>t_{0.95}^{(9)}=1.83\Rightarrow H_{04}$ rejected at $5\,\%\Rightarrow$ the risk of losing customers is less than $5\,\%$

- ? Can it be simultaneously true that $\beta_1 = 30$ and $\beta_2 = -1$?
- ! Full model: $\hat{\beta}=(25.5,38.2,-0.952)',\ S(\hat{\beta})=498.2;$ Reduced model with fixed $\beta_1=30,\ \beta_2=1$ leading to $\hat{\beta}_0=49.0$: $\hat{\beta}_r=(49.0,30,-1)',\ S_0=S(\hat{\beta}_r)=1808;\ M-M_0=2\ {\rm df},\ n-M=9\ {\rm df},$ $T\sim F(2,9),\ t_{\rm data}=9/2\ (S_0-S)/S=11.8>f_{0.95}^{(2.9)}=4.26\Rightarrow H_0\ {\rm rejected}$

4.1.4 The *p*-value

- Obviously, it is not very efficient to test H_0 for a fixed significance level α (one does not know how significant the result really is)
- Instead, one would like to know the minimum α for rejection (notice the statistical reliability-sensitivity uncertainty relation) or the p-value.
- ► The most general definition is:

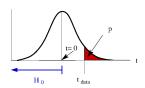
$$p = \mathsf{Prob}(T \in E_{\mathsf{data}}|H_0^*))$$

where the extreme region $E_{\rm data}$ contains all realisations of T that are further away from H_0 than $t_{\rm data}$. Hence, $t_{\rm data}$ lies on the boundary of $E_{\rm data}$ Relation to the rejection region? p is defined such that $E_{\rm data}=R(p)$

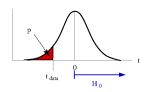
- ▶ $p \ge 5\%$: not significant (no star at the value for β , sometimes a "+" if between 5% and 10%, e.g., $\beta_1 = 4.2^+$)
- ightharpoonup p < 5%: significant (one star, e.g., $\beta_1 = 4.2^*$)
- ho p < 1%: very significant (two star, $\beta_1 = 4.2^{**}$)
- ▶ p < 0.001: highly significant (three stars, $\beta_1 = 4.2^{***}$)

Calculating p for some basic tests

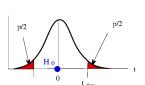
Interval test $H_0: \beta \leq \beta_0$ or $\beta < \beta_0$ $p = P(T > t_{\text{data}} | \beta = \beta_0) = 1 - F_T(t_{\text{data}})$



Interval test $H_0: \beta \geq \beta_0$ or $\beta > \beta_0$ $p = P(T < t_{\mathsf{data}} | \beta = \beta_0) = F_T(t_{\mathsf{data}})$



Point test $H_0: \beta = \beta_0$ (symmetry of f_T assumed at the 3rd equality sign) $p = P((T > |t_{\text{data}}|) \cup (T < -|t_{\text{data}}|))$ $= (1 - F_T(|t_{\text{data}}|)) + F_T(-|t_{\text{data}}|)$ $= 1 - F_T(|t_{\text{data}}|) + 1 - F_T(|t_{\text{data}}|)$ $= 2(1 - F_T(|t_{\text{data}}|))$



4.1 General Four-Step Procedure

p-values for the null hypotheses of the hotel example

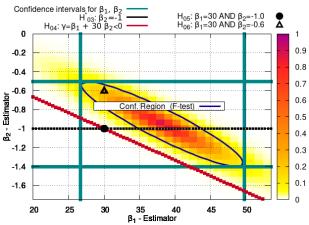
$$y = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where $x_0 = 1$, x_1 : proxy for quality [# stars]; x_2 : price

Econometrics Master's Course: Methods

- \blacktriangleright H_{01} "stars do not matter": point hypothesis $\beta_1=0$ $t_{\text{data}} = 7.49, \ p = 2(1 - F_T^{(9)})(|t_{\text{data}}|) = 3.7E - 5^{***}$
- $ightharpoonup H_{02}$ "more stars are better": interval hypothesis $\beta_1 < 0$ $t_{\text{data}} = 7.49, \ p = 1 - F_T^{(9)}(t_{\text{data}}) = 1.9E - 5^{***}$
- ▶ H_{03} " Δ occupancy ≤ -1 % per addtl \in ": interval hypothesis $\beta_2 < -1$ $t_{\text{data}} = 0.24, \ p = 1 - F_T^{(9)}(t_{\text{data}}) = 40\%$
- ► H_{04} One star more is worth less than $30 \in$ ": function interval hypothesis $\gamma = \beta_1 + 30\beta_2 < 0$ $t_{\text{data}} = 4.20, \ p = 1 - F_T^{(9)}(t_{\text{data}}) = 0.12 \%^{**}$
- $ightharpoonup H_{05}$ "star and price sensitivity simultaneously given": compound point hypothesis $(\beta_1 = 30) \cap (\beta_2 = -1)$ $t_{\text{data}} = 11.8, \ p = 1 - F_E^{(2,9)}(t_{\text{data}}) = 0.30 \%^{**}$

Visualization



- ▶ Turquoise lines: boundaries of the $\alpha = 5\%$ -Cls of β_1 and β_2
- lacktriangle Black line: boundary of simple interval null hypothesis $H_{03}: eta_2 \leq -1$ (t-test)
- ▶ Red boxes: boundary of the function intervall hypothesis $H_{04}: \gamma = \beta_1 + 30\beta_2 < 0$ (*t*-test)
- ▶ Black symbols: simultaneous point hypotheses (F-test)
 - •: $H_{05}: (\beta_1 = 30) \cap \beta_2 = -1$, $\triangle: H_{06}: (\beta_1 = 30) \cap (\beta_2 = -0.6)$.

TECHNISCHE UNIVERSITÄT DRESDEN

4.2 Dependence on the True Parameter Value

All statistical tests, including the p-values, are based on some null hypothesis which is supposed to be marginally fulfilled, $\beta = \beta_0 \in H_0^*$. What if the true parameter values take on other values?

- Since regression parameters are continuous, the probability $P(H_0^*)=0$ exactly, so the tests and p-values do not reflect reality
- Nhat happens for other values $\beta \notin H_0^*$? This is quantified by following conditional probability called **statistical power** function:

$$\pi_{\alpha}(\beta) = \Pr(\text{test rejected at error probability } \alpha | \beta)$$

- ▶ If $\beta \notin H_0$, then $\pi(\beta)$ indicates the **statistical power** or **specificity** of a test and $1 \pi(\beta)$ its probability for a type-II error
- ▶ If $\beta \in H_0$, then $\pi(\beta)$ is the type-I (α) error and $1 \pi(\beta)$ the sensitivity of a test
- Sensitivity and specificity depend on the assumed error probability α . By definition, $\pi(\beta_0) = \alpha$ if $\beta_0 \in H_0^*$

Calculating the statistical power function

- ▶ If $\beta \neq \beta_0 \in H_0^*$, then the usual test function, e.g., $(\hat{eta}_j - eta_{j0})/\sqrt{\hat{V}_{jj}}$ does *no longer* obey a standard statistical distribution such as standardnormal or student-t
- ▶ However, $T=(\hat{\beta}_j-\beta_j)/\sqrt{\hat{V}_{jj}}$ does:

Econometrics Master's Course: Methods

$$T = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} + \frac{\beta_{j0} - \beta_j}{\sqrt{\hat{V}_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} - \Delta T$$

► ⇒ The independent variable of the power function is the standardized difference $\Delta T = (eta_j - eta_{j0})/\sqrt{\hat{V}_{jj}}$

Example I: Interval test for < and \le

$$\begin{split} \pi^{\leq}(\Delta T) & \stackrel{\text{def rejection}}{=} & P\left(\frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} > t_{1-\alpha}\right) \\ & \stackrel{\text{def } \Delta T}{=} & P(T + \Delta T > t_{1-\alpha}) \\ & = & P(T > -\Delta T + t_{1-\alpha}) \\ & = & 1 - P(T < -\Delta T + t_{1-\alpha}) \\ & \stackrel{\text{symm.}}{=} & P(T < \Delta T - t_{1-\alpha}) \\ & \stackrel{\text{def distr.}}{=} & \underline{F_T(\Delta T - t_{1-\alpha})} \end{split}$$

- **?** Test this expression by calculating $\pi^{\leq}(0)$ and $\pi'^{\leq}(0)$
- Just insert $\Delta T = 0$:

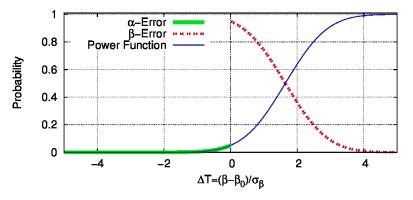
$$\pi^{\leq}(0) = F_T(-t_{1-\alpha})$$

$$= F_T(t_{\alpha})$$

$$\stackrel{\text{def quantile}}{=} \alpha \checkmark$$

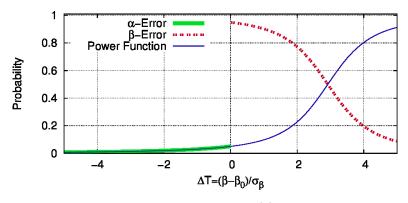
$$\pi'^{\leq}(0) = f_T(-t_{1-\alpha}) > 0 \checkmark$$

Type I and II errors for "<" or " \leq "-tests as a function of the true value relative to H_0 , known variance



- ▶ The maximum type-I error probability of α occurs if $\beta = \beta_0$, i.e., at the boundary of H_0 .
- ▶ The maximum type-II error probability of 1α occurs if β is just outside of H_0 .

The same for unknown variance, df=2 degrees of freedom



▶ The increase with ΔT is steeper but $\pi(0) = \alpha$ is unchanged

Example II: Interval test for for > and \ge

$$\pi^{\geq}(\Delta T) \overset{\text{def rejection}}{=} P\left(\frac{\hat{\beta}_{j} - \beta_{j0}}{\sqrt{\hat{V}_{jj}}} < t_{\alpha}\right)$$

$$\overset{\text{def }\Delta T}{=} P(T + \Delta T < t_{\alpha})$$

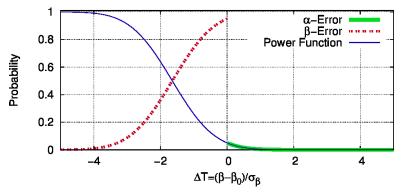
$$= P(T < -\Delta T + t_{\alpha})$$

$$\overset{\text{def distr.}}{=} \underbrace{F_{T}(t_{\alpha} - \Delta T)}$$

- **?** Test this expression by calculating $\pi^{\geq}(0)$ and $\pi'^{\geq}(0)$
- Just insert $\Delta T = 0$:

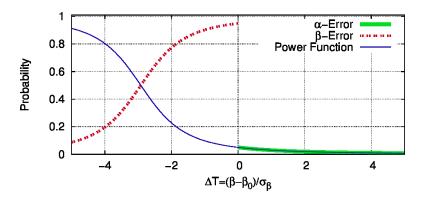
$$\begin{array}{lll} \pi^{\geq}(0) & \stackrel{\mathrm{def \,\, quantile}}{=} & \alpha \quad \checkmark \\ \pi'^{\geq}(0) & = & -f_T(0) < 0 \quad \checkmark \end{array}$$

Type I and II errors for ">" or "≥"-tests, known variance



- Again, the maximum type I and II error probabilities of α and $1-\alpha$, respectively, are obtained if the true parameter(s) are at the boundary / very near outside of H_0 .
- ➤ The maximum type-I error probability is also known as significance level.

The same for unknown variance, df=2 degrees of freedom



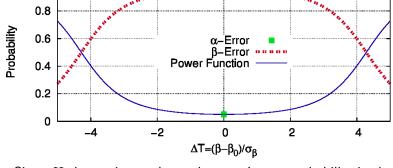
Example III: Point test for "="

$$\begin{split} \pi^{\,\mathrm{eq}}(\Delta T) & \stackrel{\mathrm{def \ rejection}}{=} & P\left(\left|\frac{\hat{\beta}_j - \beta_{j0}}{\hat{\sigma}_{\hat{\beta}_j}}\right| > t_{1-\alpha/2}\right) \\ & \stackrel{\mathrm{def}}{=} \Delta^T & P(|T + \Delta T| > t_{1-\alpha/2}) \\ & = & P(T + \Delta T > t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & = & 1 - P(T + \Delta T \leq t_{1-\alpha/2}) + P(T + \Delta T < -t_{1-\alpha/2}) \\ & \stackrel{\mathrm{def \ distr.}}{=} & 1 - F_T(t_{1-\alpha/2} - \Delta T) + F_T(-t_{1-\alpha/2} - \Delta T) \\ & \stackrel{\mathrm{symm.}}{=} & \underbrace{2 - F_T(t_{1-\alpha/2} - \Delta T) - F_T(t_{1-\alpha/2} + \Delta T)}_{} \end{split}$$

- **?** Test this expression by calculating $\pi^{\leq}(0)$
- Just insert $\Delta T = 0$:

$$\pi^{\text{eq}}(0) = 2 - (1 - \alpha/2) - (1 - \alpha/2) = \alpha$$

Type I and II errors for two-sided (point-)tests (unkown variance, df=2)



Since H_0 is a point set here, the type-I error probability is always given by α ("significance level")

4.3 Model Selection Strategies Problem Statement

- ▶ With every additional parameter, the fit quality in terms of the SSE becomes better (why?)
- However, the risk of overfitting increases. In the words of John Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle [its] trunk.
- Overfitted models do not validate and can make neither statements nor predictions.
- ➤ ⇒ we need selection criteria taking care of overfitting!

Model selection: some standard criteria

 \blacktriangleright (1) Adjusted R^2 :

$$\bar{R}^2 = 1 - \frac{n-1}{n-J-1} (1 - R^2), \quad R^2 = 1 - \frac{S}{S_0},$$

 $S = \mathsf{SSE}(\mathsf{calibr.\ full\ model}), \quad S_0 = \mathsf{SSE}(\mathsf{calibr.\ constant-only\ model}).$

▶ (2) Akaike information criterion AIC:

$$AIC = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \frac{2}{n},$$

▶ (3) Bayes' Information criterion BIC:

$$\mathsf{BIC} = \ln \hat{\sigma}_{\mathsf{descr}}^2 + J \frac{\ln n}{\pi}.$$

Notice that the descriptive $\hat{\sigma}_{\text{descr}}^2 = S/n$ instead of the unbiased $\hat{\sigma}^2 = S/(n-1-J)$ are assumed when defining AIC and BIC.

Model selection: Strategy à la "Occam's Razor"

- ldentify J possibly relevant exogenous factors (the constant is always included) and calculate \bar{R}^2 , AIC, or BIC for all 2^J combinations of these factors (a given factor is either contained or not) by brute force).
- ▶ The best model is that maximizing \bar{R}^2 or minimizing AIC or BIC.
- Since AIC and also \bar{R}^2 penalize complex models (with many parameters) too little, the BIC is usually the best bet.
- Besides the brute-force approach, there are two faster strategies that may not find the "best" model (BIC etc are not transitive)
 - ▶ Top-down approach: Start with all the J factors. In each round, eliminate a single factor such that the reduced model has the highest increase in \bar{R}^2 / decrease in AIC or BIC. Stop if there is no further improvement.
 - **Bottom-up approach**: Start with the constant-only model $y = \beta_0$ and successively add factors until there is no further improvement.
- ▶ Standard statistics packages contain all of these strategies.

4.4. Logistic regression

- Normal linear models of the form $Y = \beta' x + \epsilon$ require the endogenous variable to be continuous (discuss!)
- Using model chaining with an unobservable intermediate continuous variable Y^* allows one to model binary outcomes:

$$Y(x) = \begin{cases} 1 & Y^*(x) > 0 \\ 0 & \text{otherwise,} \end{cases} Y^*(x) = \hat{y}^*(x) + \epsilon = \beta' x + \epsilon$$

where ϵ obeys the **logistic distribution** with $F_{\epsilon}(x) = e^x/(e^x+1)$

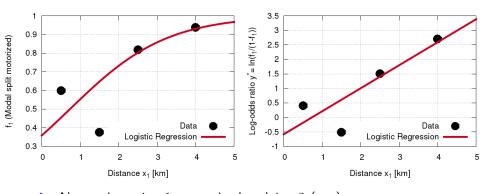
▶ Probability P_1 for the outcome Y = 1:

$$P_1 = P(Y^*(\boldsymbol{x}) > 0) = F_{\epsilon}(\boldsymbol{\beta}'\boldsymbol{x}) = \frac{e^{\boldsymbol{\beta}'\boldsymbol{x}}}{e^{\boldsymbol{\beta}'\boldsymbol{x}} + 1}$$

Formally, this is a normal linear regression model for the log of the odds ratio $P_1/P_0 = P1/(1-P_1)$:

$$\hat{y}^*(\boldsymbol{x}) = \boldsymbol{eta}' \boldsymbol{x} = \ln \left(\frac{P_1}{P_0} \right)$$

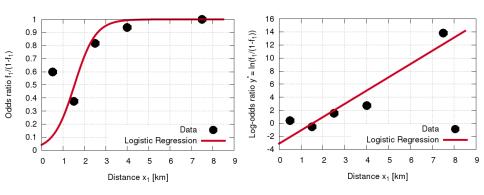
Example: naive OLS-estimation (RP student interviews)



- Alternatives: i = 1: motorized and i = 2 (not)
- Intermediate variable estimated by percentaged choices: $y^* = \ln(f_1/(1 f_1))$
- ▶ Model: Log. regression, $\hat{y}^*(x_1) = \beta_0 + \beta_1 x_1$
- ▶ OLS Estimation: $\beta_0 = -0.58$, $\beta_1 = 0.79$

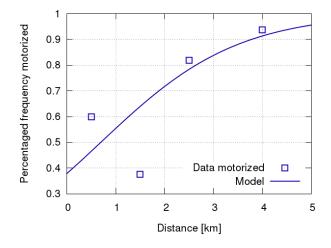
TECHNISCHE UNIVERSITÄT DRESOEN

Method consistent? added 5th data point with f=0.9999



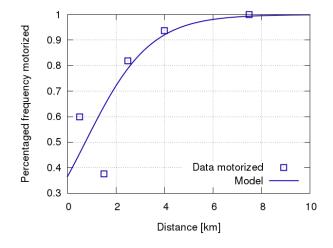
- ► Same model: $\hat{y}^*(x_1) = \beta_0 + \beta_1 x_1$
- New estimation: $\beta_0 = -3.12$, $\beta_1 = 2.03$
- Estimation would fail if $f_1 = 0$ or $=1 \Rightarrow$ real discrete-choice model necessary!

Comparison: real Maximum-Likelihood (ML) estimation



- ► Model: Logit, $V_i(x_1) = \beta_0 \delta_{i1} + \beta_1 x_1 \delta_{i1}$, $V_2 = 0$.
- ► Estimation: $\beta_0 = -0.50 \pm 0.65$, $\beta_1 = +0.71 \pm 0.30$

Comparison: real ML estimation with added 5th data point



- ► Same logit model, $V_i(x_1) = \beta_0 \delta_{i1} + \beta_1 x_1 \delta_{i1}$, $V_2 = 0$.
- New estimation: $\beta_0 = -0.55 \pm 0.63$, $\beta_1 = +0.75 \pm 0.27$