Lecture 03: Classical Inferential Statistics I:

 Basics and Confidence Intervals3.1 Expectation and Covariance Matrix of the Ordinary Least Squares (OLS)
Estimator
3.2 Confidence Intervals

3.1. Ordinary Least Squares (OLS) Estimator: Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ - The OLS estimator is linear in y :

3.1. Ordinary Least Squares (OLS) Estimator: Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- The OLS estimator is linear in \boldsymbol{y} :

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

3.1. Ordinary Least Squares (OLS) Estimator: Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- The OLS estimator is linear in \boldsymbol{y} :

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})
\end{aligned}
$$

3.1. Ordinary Least Squares (OLS) Estimator: Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- The OLS estimator is linear in \boldsymbol{y} :

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}
\end{aligned}
$$

3.1. Ordinary Least Squares (OLS) Estimator:

Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- The OLS estimator is linear in \boldsymbol{y} :

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \\
& =\underline{\underline{\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}}}
\end{aligned}
$$

Expectation value

$$
E(\hat{\boldsymbol{\beta}})=E(\boldsymbol{\beta})+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E(\boldsymbol{\epsilon})=\boldsymbol{\beta}
$$

3.1. Ordinary Least Squares (OLS) Estimator:

Expectation and Covariance

- Only stochasticity: residual errors $\boldsymbol{\epsilon}$ according to $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- The OLS estimator is linear in \boldsymbol{y} :

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \\
& =\underline{\underline{\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}}}
\end{aligned}
$$

Expectation value

$$
E(\hat{\boldsymbol{\beta}})=E(\boldsymbol{\beta})+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E(\boldsymbol{\epsilon})=\boldsymbol{\beta}
$$

The OLS estimator of parameter-linear models is unbiased under the mild condition $E(\boldsymbol{\epsilon})=\mathbf{0}$ for all the data points

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed

- In this case, the complete error characteristics are specified by
 the expectation value and the variance-covariance matrix \mathbf{V}

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\beta}}$

$$
\mathbf{V}_{\hat{\boldsymbol{\beta}}} \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right)
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
{\left[\text { insert } \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right)
\end{aligned}
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
{\left[\text { insert } \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right) \\
\text { [transpose and inversion rules } \rightarrow] & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \epsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
{\left[\text { insert } \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right) \\
\text { [transpose and inversion rules } \rightarrow] & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \epsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
{[E(.) \text { acts only on } \epsilon \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
\text { [insert } \left.\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right) \\
{[\text { transpose and inversion rules } \rightarrow] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \epsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
{[E(.) \text { acts only on } \epsilon \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\boldsymbol{\epsilon} \epsilon^{\prime}\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
{[\text { Gauß-Markow } \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma_{\epsilon}^{2} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
{\left[\text { insert } \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right) \\
{[\text { transpose and inversion rules } \rightarrow] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \epsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
{[E(.) \text { acts only on } \epsilon \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
{[\text { Gauß-Markow } \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma_{\epsilon}^{2} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
{[\text { def inverse matrix } \rightarrow] } & =\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

OLS estimator: variances and covariances

- Gauß-Markow conditions $\rightarrow \epsilon \sim$ i.i.d $N\left(0, \sigma^{2}\right) \rightarrow \hat{\boldsymbol{\beta}}$ is normal distributed
- In this case, the complete error characteristics are specified by the expectation value and the variance-covariance matrix $\mathbf{V}_{\hat{\boldsymbol{\beta}}}$

$$
\begin{aligned}
\mathbf{V}_{\hat{\boldsymbol{\beta}}} & \stackrel{\text { def }}{=} E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right) \\
{\left[\text { insert } \hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \rightarrow\right] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)^{\prime}\right) \\
{[\text { transpose and inversion rules } \rightarrow] } & =E\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} \epsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
{[E(.) \text { acts only on } \epsilon \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
{[\text { Gauß-Markow } \rightarrow] } & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma_{\epsilon}^{2} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
{[\text { def inverse matrix } \rightarrow] } & =\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

The variance-covariance matrix depends only on the values of the exogenous factors!

Results

- Ordinary least squares (OLS) estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

Variance-Covariance matrix of the estimation errors (provided the errors are i.i.d.) can be written in terms of the Hesse matrix H of the objective function SSE:

Results

- Ordinary least squares (OLS) estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

- Variance-Covariance matrix of the estimation errors (provided the errors are i.i.d.) can be written in terms of the Hesse matrix H of the objective function SSE:

$$
\begin{aligned}
\mathbf{v}_{\hat{\boldsymbol{\beta}}} & =E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=2 \sigma^{2} \mathbf{H}^{-1}, \\
H_{j k} & =\left.\frac{\partial^{2} S}{\partial \beta_{j} \partial \beta_{k}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}=2\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j k}
\end{aligned}
$$

- Variances of estimation errors:

Results

- Ordinary least squares (OLS) estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

- Variance-Covariance matrix of the estimation errors (provided the errors are i.i.d.) can be written in terms of the Hesse matrix H of the objective function SSE:

$$
\begin{aligned}
\mathbf{v}_{\hat{\boldsymbol{\beta}}} & =E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=2 \sigma^{2} \mathbf{H}^{-1}, \\
H_{j k} & =\left.\frac{\partial^{2} S}{\partial \beta_{j} \partial \beta_{k}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}=2\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j k}
\end{aligned}
$$

- Variances of estimation errors: $V\left(\hat{\beta}_{j}\right)=V_{j j}$
- Correlation of estimation errors:
\qquad

Results

- Ordinary least squares (OLS) estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

- Variance-Covariance matrix of the estimation errors (provided the errors are i.i.d.) can be written in terms of the Hesse matrix H of the objective function SSE:

$$
\begin{aligned}
\mathbf{v}_{\hat{\boldsymbol{\beta}}} & =E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=2 \sigma^{2} \mathbf{H}^{-1}, \\
H_{j k} & =\left.\frac{\partial^{2} S}{\partial \beta_{j} \partial \beta_{k}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}=2\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j k}
\end{aligned}
$$

- Variances of estimation errors: $V\left(\hat{\beta}_{j}\right)=V_{j j}$
- Correlation of estimation errors: $\operatorname{Corr}\left(\hat{\beta}_{j}, \hat{\beta}_{k}\right)=\frac{V_{j k}}{\sqrt{V_{j j} V_{k k}}}$

Results

- Ordinary least squares (OLS) estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

- Variance-Covariance matrix of the estimation errors (provided the errors are i.i.d.) can be written in terms of the Hesse matrix H of the objective function SSE:

$$
\begin{aligned}
\mathbf{v}_{\hat{\boldsymbol{\beta}}} & =E\left((\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=2 \sigma^{2} \mathbf{H}^{-1}, \\
H_{j k} & =\left.\frac{\partial^{2} S}{\partial \beta_{j} \partial \beta_{k}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}}=2\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{j k}
\end{aligned}
$$

- Variances of estimation errors: $V\left(\hat{\beta}_{j}\right)=V_{j j}$
- Correlation of estimation errors: $\operatorname{Corr}\left(\hat{\beta}_{j}, \hat{\beta}_{k}\right)=\frac{V_{j k}}{\sqrt{V_{j j} V_{k k}}}$
- Distribution of the normalized estimation errors: $\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{V_{j j}}} \sim N(0,1)$

Estimation of the residual variance

The above cannot be applied directly since the residual variance σ^{2} is unknown and must be estimated by the minimum SSE $S(\hat{\beta})$:

$$
\hat{\sigma}^{2}=\frac{1}{n-J-1} \sum_{i}\left(y_{i}-\hat{y}\left(\boldsymbol{x}_{i}\right)\right)^{2}=\frac{S(\hat{\beta})}{n-J-1}
$$

Under the Gauß-Markow assumptions, this can be expressed as the sum of squared Gaussians as follows (derivation for the experts):

$$
\begin{aligned}
(n-J-1) \hat{\sigma}^{2} & =(\hat{\boldsymbol{y}}-\boldsymbol{y})^{\prime}(\hat{\boldsymbol{y}}-\boldsymbol{y}) \\
& =(\mathbf{X} \hat{\boldsymbol{\beta}}-\boldsymbol{y})^{\prime}(\mathbf{X} \hat{\boldsymbol{\beta}}-\boldsymbol{y}) \\
& =(\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{X} \hat{\boldsymbol{\beta}})-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime}(\mathbf{X} \boldsymbol{\beta})+\boldsymbol{y}^{\prime} \boldsymbol{y}
\end{aligned}
$$

With following rule for scalar products: $\boldsymbol{a}^{\prime} \boldsymbol{b}=\boldsymbol{b}^{\prime} \boldsymbol{a}$ it follows that the two middle terms are equal. Replacing $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}$ we see that, interestingly, the first term is the negative of each of the two middle terms resulting in

$$
(n-J-1) \hat{\sigma}^{2}=\boldsymbol{y}^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \boldsymbol{y}
$$

Estimation of the residual variance (ctned)

Finally, we replace the observed endogeneous data vector \boldsymbol{y} by the model $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ Notice: the true and, according to the Gauß-Markow assumptions, immutable parameter vector $\boldsymbol{\beta}$ is used here!:

$$
\begin{aligned}
(n-J-1) \hat{\sigma}^{2}= & (\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \\
= & \boldsymbol{\epsilon}^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \boldsymbol{\epsilon} \\
& +2(\mathbf{X} \boldsymbol{\beta})^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \boldsymbol{\epsilon}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right.
\end{aligned}
$$

After doing the simplification, we realize that the second and third term are each equal to zero, so we have the final result

$$
(n-J-1) \hat{\sigma}^{2}=\boldsymbol{\epsilon}^{\prime}\left(\mathbf{1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \boldsymbol{\epsilon}
$$

With the Gauß-Markow-assumptions, this is proportional to a sum of $(n-J-1)$ squared Gaussians, i.e., a $\chi^{2}(n-J-1)$ distributed random variable

Results if the variance needs to be estimated

- Estimated variance-covariance matrix:

$$
\hat{\mathbf{V}}_{\hat{\boldsymbol{\beta}}}=2 \hat{\sigma}^{2} \mathbf{H}^{-1}=\hat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

> The normalized approximate estimation errors are student-t distributed (a Gaussian in the numerator and the square root of a χ^{2} distributed random variable in the denominator):

Results if the variance needs to be estimated

- Estimated variance-covariance matrix:

$$
\hat{\mathbf{V}}_{\hat{\boldsymbol{\beta}}}=2 \hat{\sigma}^{2} \mathbf{H}^{-1}=\hat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- The normalized approximate estimation errors are student-t distributed (a Gaussian in the numerator and the square root of a χ^{2} distributed random variable in the denominator):

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{V}_{j j}}} \sim T(n-1-J)
$$

Multivariate distribution function of $\hat{\boldsymbol{\beta}}$

The distribution of the errors $\Delta \hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}$ obeys a multivariate normal distribution:

$$
f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{V}^{-1} \Delta \hat{\boldsymbol{\beta}}\right]=\exp \left[-\frac{\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}\right] .
$$

Relation to the maximum-likelihood-method (\rightarrow Lecture 07:) Expand the SSE $S(\boldsymbol{\beta})$ around $\boldsymbol{\beta}$ to second order:

Multivariate distribution function of $\hat{\boldsymbol{\beta}}$

The distribution of the errors $\Delta \hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}$ obeys a multivariate normal distribution:

$$
f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{V}^{-1} \Delta \hat{\boldsymbol{\beta}}\right]=\exp \left[-\frac{\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}\right] .
$$

Relation to the maximum-likelihood-method (\rightarrow Lecture 07:) Expand the SSE $S(\boldsymbol{\beta})$ around $\hat{\boldsymbol{\beta}}$ to second order:

$$
S(\boldsymbol{\beta})-S(\hat{\boldsymbol{\beta}}) \approx \frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{H} \Delta \hat{\boldsymbol{\beta}}=\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}
$$

Multivariate distribution function of $\hat{\boldsymbol{\beta}}$

The distribution of the errors $\Delta \hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}$ obeys a multivariate normal distribution:

$$
f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{V}^{-1} \Delta \hat{\boldsymbol{\beta}}\right]=\exp \left[-\frac{\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}\right] .
$$

Relation to the maximum-likelihood-method (\rightarrow Lecture 07:) Expand the SSE $S(\boldsymbol{\beta})$ around $\hat{\boldsymbol{\beta}}$ to second order:

$$
\begin{aligned}
& S(\boldsymbol{\beta})-S(\hat{\boldsymbol{\beta}}) \approx \frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{H} \Delta \hat{\boldsymbol{\beta}}=\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}} \\
\Rightarrow \quad & f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{S(\boldsymbol{\beta})-S(\hat{\boldsymbol{\beta}})}{2 \sigma_{\epsilon}^{2}}\right]
\end{aligned}
$$

and with the estimated residual variance $\hat{\sigma}_{\epsilon}^{2}=S(\hat{\boldsymbol{\beta}}) /(n-J-1)$

Multivariate distribution function of $\hat{\boldsymbol{\beta}}$

The distribution of the errors $\Delta \hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}$ obeys a multivariate normal distribution:

$$
f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{V}^{-1} \Delta \hat{\boldsymbol{\beta}}\right]=\exp \left[-\frac{\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}\right] .
$$

Relation to the maximum-likelihood-method (\rightarrow Lecture 07:) Expand the SSE $S(\boldsymbol{\beta})$ around $\hat{\boldsymbol{\beta}}$ to second order:

$$
S(\boldsymbol{\beta})-S(\hat{\boldsymbol{\beta}}) \approx \frac{1}{2} \Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{H} \Delta \hat{\boldsymbol{\beta}}=\Delta \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \Delta \hat{\boldsymbol{\beta}}
$$

$$
\Rightarrow \quad f_{\hat{\boldsymbol{\beta}}}(\Delta \hat{\boldsymbol{\beta}}) \propto \exp \left[-\frac{S(\boldsymbol{\beta})-S(\hat{\boldsymbol{\beta}})}{2 \sigma_{\epsilon}^{2}}\right]
$$

and with the estimated residual variance $\hat{\sigma}_{\epsilon}^{2}=S(\hat{\boldsymbol{\beta}}) /(n-J-1)$

$$
\hat{f}_{\hat{\boldsymbol{\beta}}}(\boldsymbol{\beta}) \propto \exp \left[-\frac{(n-J-1)}{2}\left(\frac{S(\boldsymbol{\beta})}{S(\hat{\boldsymbol{\beta}})}-1\right)\right]
$$

Example of correlated errors: modeling the demand for hotel rooms

- The example of Lecture 02:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Exogenous factors: $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price [$€ /$ night]

Example of correlated errors: modeling the demand for hotel rooms

- The example of Lecture 02:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Exogenous factors: $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price [$€ /$ night].
- Endogenous variable: booking rate [\%]

Example of correlated errors: modeling the demand for hotel rooms

- The example of Lecture 02:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Exogenous factors: $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price [$€ /$ night].
- Endogenous variable: booking rate [\%]
- The demand is positively correlated with both the quality and the price

Example of correlated errors: modeling the demand for hotel rooms

- The example of Lecture 02:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Exogenous factors: $x_{0}=1, x_{1}$: proxy for quality [\# stars]; x_{2} : price [$€ /$ night].
- Endogenous variable: booking rate [\%]
- The demand is positively correlated with both the quality and the price

Residual errors for fitted parameters

Effect of mis-fit parameters I: small effect if $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ have opposite misfits

β_{1} and β_{2} shifted by $\Delta \beta_{1}$ and $-\Delta \beta_{2}$, respectively

Effect of mis-fit parameters II: small effect if $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ have opposite misfits

β_{1} and β_{2} shifted by $-\Delta \beta_{1}$ and $+\Delta \beta_{2}$, respectlvely

Effect of mis-fit parameters III: large effect if $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ have both positive misfits
β_{1} and β_{2} shifted by $\Delta \beta_{1}$ and $\Delta \beta_{2}$, respectively

Effect of mis-fit parameters IV: large effect if $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ have

 both negative misfits

All this results in a negative correlation between the estimation errors for $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$

Density hat $(\mathrm{f})\left(\operatorname{hat}(\beta)_{1}, \operatorname{hat}(\beta)_{2}\right) \mid \beta_{1}=38.21, \beta_{2}=-0.95$

Special case 1: No exogenous variables

- Model: $y=\beta_{0}+\epsilon:=\mu+\epsilon$

System matrix: $\mathrm{X}=(1,1, \ldots, 1)^{\prime}$

Special case 1: No exogenous variables

- Model: $y=\beta_{0}+\epsilon:=\mu+\epsilon$
- System matrix: $\mathbf{X}=(1,1, \ldots, 1)^{\prime}$

Special case 1: No exogenous variables

- Model: $y=\beta_{0}+\epsilon:=\mu+\epsilon$
- System matrix: $\mathbf{X}=(1,1, \ldots, 1)^{\prime}$
- OLS estimator:

$$
\begin{array}{r}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n}, \quad \mathbf{X}^{\prime} \boldsymbol{y}=\sum_{i} y_{i}=n \bar{y}, \\
\hat{\beta}_{0}=\hat{\mu}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\bar{y}
\end{array}
$$

Special case 1: No exogenous variables

- Model: $y=\beta_{0}+\epsilon:=\mu+\epsilon$
- System matrix: $\mathbf{X}=(1,1, \ldots, 1)^{\prime}$
- OLS estimator:

$$
\begin{array}{r}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n}, \quad \mathbf{X}^{\prime} \boldsymbol{y}=\sum_{i} y_{i}=n \bar{y} \\
\hat{\beta}_{0}=\hat{\mu}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\bar{y}
\end{array}
$$

- Variance: $V_{00}=V(\hat{\mu})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n}, \quad \hat{V}_{00}=\frac{\hat{\sigma}^{2}}{n}$

Special case 1: No exogenous variables

- Model: $y=\beta_{0}+\epsilon:=\mu+\epsilon$
- System matrix: $\mathbf{X}=(1,1, \ldots, 1)^{\prime}$
- OLS estimator:

$$
\begin{array}{r}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n}, \quad \mathbf{X}^{\prime} \boldsymbol{y}=\sum_{i} y_{i}=n \bar{y} \\
\hat{\beta}_{0}=\hat{\mu}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\bar{y}
\end{array}
$$

- Variance: $V_{00}=V(\hat{\mu})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n}, \quad \hat{V}_{00}=\frac{\hat{\sigma}^{2}}{n}$
- Distribution of the estimator (if $\epsilon \sim$ i.i.dN $\left(\mu, \sigma^{2}\right)$)

$$
\begin{aligned}
& \frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{V_{00}}}=\frac{\bar{y}-\mu}{\sigma} \sqrt{n} \sim N(0,1), \\
& \frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{\hat{V}_{00}}}=\frac{\bar{y}-\mu}{\hat{\sigma}} \sqrt{n} \sim T(n-1)
\end{aligned}
$$

Special case 2: Simple linear regression

- Model (with $\left.x_{1}=x\right): y=\beta_{0}+\beta_{1} x+\epsilon$
- System matrix:

Special case 2: Simple linear regression

- Model (with $\left.x_{1}=x\right): y=\beta_{0}+\beta_{1} x+\epsilon$
- System matrix:

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right), \quad \mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cc}
n & n \bar{x} \\
n \bar{x} & \sum x_{i}^{2}
\end{array}\right)
$$

$>$ OLS estimator $\left(\right.$ with $\left.s_{x}^{2}=1 / n\left(\sum x_{i}^{2}-n \bar{x}\right)\right)$:

Special case 2: Simple linear regression

- Model (with $\left.x_{1}=x\right): y=\beta_{0}+\beta_{1} x+\epsilon$
- System matrix:

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right), \quad \mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cc}
n & n \bar{x} \\
n \bar{x} & \sum x_{i}^{2}
\end{array}\right)
$$

- OLS estimator (with $s_{x}^{2}=1 / n\left(\sum x_{i}^{2}-n \bar{x}\right)$):

$$
\begin{aligned}
& \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n s_{x}^{2}}\left(\begin{array}{cc}
\frac{\sum x_{i}^{2}}{n} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right), \quad \mathbf{X}^{\prime} \boldsymbol{y}=\binom{n \bar{y}}{\sum x_{i} y_{i}} \\
& \hat{\beta}_{1}=\left(-\frac{\bar{x}}{n s_{x}^{2}}, \frac{1}{n s_{x}^{2}}\right)\binom{n \bar{y}}{\sum x_{i} y_{i}}=\frac{\sum_{i} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum x_{i}^{2}-n \bar{x}}=\frac{s_{x y}}{s_{x}^{2}}, \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

Simple linear regression (ctnd)

- Variance-covariance matrix (assuming w/o loss of generality $\bar{x}=0$):

$$
\mathbf{V}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\begin{array}{cc}
\frac{1}{n} & 0 \\
0 & \frac{1}{n s_{x}^{2}}
\end{array}\right)
$$

\Rightarrow Variance of the estimator $\hat{y}(x)$ (x is deterministic):

Distribution of the estimator for $y(x)$

Simple linear regression (ctnd)

- Variance-covariance matrix (assuming w/o loss of generality $\bar{x}=0$):

$$
\mathbf{V}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\begin{array}{cc}
\frac{1}{n} & 0 \\
0 & \frac{1}{n s_{x}^{2}}
\end{array}\right)
$$

- Variance of the estimator $\hat{y}(x)$ (x is deterministic):
$V(\hat{y}(x))=V\left(\hat{\beta}_{0}+\hat{\beta}_{1} x\right)=V_{00}+x^{2} V_{11}+2 x V_{01}=\frac{\sigma^{2}}{n}\left(1+\frac{x^{2}}{s_{x}^{2}}\right)$
- Distribution of the estimator for $y(x)$

If σ^{2} has to be estimated by $\hat{\sigma}^{2}$, the normalized estimators for β_{0}, β_{1} and $y(x)$ are $\sim T(n-2)$.

Simple linear regression (ctnd)

- Variance-covariance matrix (assuming w/o loss of generality $\bar{x}=0$):

$$
\mathbf{V}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\begin{array}{cc}
\frac{1}{n} & 0 \\
0 & \frac{1}{n s_{x}^{2}}
\end{array}\right)
$$

- Variance of the estimator $\hat{y}(x)$ (x is deterministic):

$$
V(\hat{y}(x))=V\left(\hat{\beta}_{0}+\hat{\beta}_{1} x\right)=V_{00}+x^{2} V_{11}+2 x V_{01}=\frac{\sigma^{2}}{n}\left(1+\frac{x^{2}}{s_{x}^{2}}\right)
$$

- Distribution of the estimator for $y(x)$:

$$
\hat{y}(x) \sim N(y(x), V(\hat{y}(x)))
$$

If σ^{2} has to be estimated by $\hat{\sigma}^{2}$, the normalized estimators for β_{0}, β_{1} and $y(x)$ are $\sim T(n-2)$.

Probability density for $\hat{y}(x)$ for simple linear regression

- If the Gauß-Markov assumptions apply, the model estimation errors $\hat{y}(x)-y(x)$ are Gaussian distributed
- The expectation and variance depends on x; the standard error is hyperbola-shaped.

3.2. Confidence Intervals:

where the Student-t distribution comes from

3.2. Confidence Intervals:

where the Student-t distribution comes from

3.2. Confidence Intervals:

where the Student-t distribution comes from

3.2. Confidence Intervals:

where the Student-t distribution comes from

Densities of standard normal vs. Student-t distribution

Distributions of standard normal vs. Student-t-distribution

Calculation of the confidence intervals (Cl)

$$
\mathrm{Cl}_{\beta_{j}}^{(\alpha)}: \beta_{j} \in\left[\hat{\beta}_{j}-\Delta \hat{\beta}_{j}, \hat{\beta}_{j}+\Delta \hat{\beta}_{j}\right], \quad \Delta \hat{\beta}_{j}=t_{1-\alpha / 2}^{(n-J-1)} \hat{\sigma}_{\hat{\beta}_{j}} .
$$

Calculation of the confidence intervals (Cl)

$$
\mathrm{Cl}_{\beta_{j}}^{(\alpha)}: \beta_{j} \in\left[\hat{\beta}_{j}-\Delta \hat{\beta}_{j}, \hat{\beta}_{j}+\Delta \hat{\beta}_{j}\right], \quad \Delta \hat{\beta}_{j}=t_{1-\alpha / 2}^{(n-J-1)} \hat{\sigma}_{\hat{\beta}_{j}} .
$$

- $t_{1-\alpha / 2}$: Quantile (inverse of) the distribution function

Cl "uncertainty principle": Higher sensitivity implies higher α error

Calculation of the confidence intervals (Cl)

$$
\mathrm{Cl}_{\beta_{j}}^{(\alpha)}: \beta_{j} \in\left[\hat{\beta}_{j}-\Delta \hat{\beta}_{j}, \hat{\beta}_{j}+\Delta \hat{\beta}_{j}\right], \quad \Delta \hat{\beta}_{j}=t_{1-\alpha / 2}^{(n-J-1)} \hat{\sigma}_{\hat{\beta}_{j}}
$$

- $t_{1-\alpha / 2}$: Quantile (inverse of) the distribution function
-Cl "uncertainty principle": Higher sensitivity implies higher α error.

Hotel example: $\mathbf{C I}$ for the appraisal for "stars" β_{1}
 Confidence Interval $\left(\beta_{1}\right)$ for $\alpha=0.05$

Model: $y(\boldsymbol{x})=\sum_{j} \beta_{j} x_{j}+\epsilon$
Factors:
$x_{0}=1, x_{1}: \#$ stars, x_{2} : price
Confidence interval (CI):
$\beta_{1} \in\left[\hat{\beta}_{1}-\Delta \hat{\beta}_{1}^{(\alpha)}, \hat{\beta}_{1}+\Delta \hat{\beta}_{1}^{(\alpha)}\right]$

Hotel example: $\mathbf{C l}$ for the appraisal for "stars" β_{1}
 Confidence Interval $\left(\beta_{1}\right)$ for $\alpha=0.05$

Model: $y(\boldsymbol{x})=\sum_{j} \beta_{j} x_{j}+\epsilon$
Factors:
$x_{0}=1, x_{1}: \#$ stars, x_{2} : price
Confidence interval (CI):

Hotel example: $\mathbf{C l}$ for the appraisal for "stars" β_{1}
 Confidence Interval $\left(\beta_{1}\right)$ for $\alpha=0.05$
 (full model)

Model: $y(\boldsymbol{x})=\sum_{j} \beta_{j} x_{j}+\epsilon$
Factors:
$x_{0}=1, x_{1}$: \#stars, x_{2} : price
Confidence interval (CI):
$\beta_{1} \in\left[\hat{\beta}_{1}-\Delta \hat{\beta}_{1}^{(\alpha)}, \hat{\beta}_{1}+\Delta \hat{\beta}_{1}^{(\alpha)}\right]$
$\Delta \hat{\beta}_{1}^{(\alpha)}=t_{1-\alpha / 2}^{(n-3)} \sqrt{\hat{V}\left(\hat{\beta}_{1}\right)}$
$\hat{V}\left(\hat{\beta}_{1}\right)=\hat{\sigma}_{\epsilon}^{2}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{11}$

Hotel example: $\mathbf{C l}$ for the appraisal for "stars" β_{1}
 Confidence Interval $\left(\beta_{1}\right)$ for $\alpha=0.05$
 (full model)

Model: $y(\boldsymbol{x})=\sum_{j} \beta_{j} x_{j}+\epsilon$
Factors:
$x_{0}=1, x_{1}$: \#stars, x_{2} : price
Confidence interval (CI):
$\beta_{1} \in\left[\hat{\beta}_{1}-\Delta \hat{\beta}_{1}^{(\alpha)}, \hat{\beta}_{1}+\Delta \hat{\beta}_{1}^{(\alpha)}\right]$
$\Delta \hat{\beta}_{1}^{(\alpha)}=t_{1-\alpha / 2}^{(n-3)} \sqrt{\hat{V}\left(\hat{\beta}_{1}\right)}$
$\hat{V}\left(\hat{\beta}_{1}\right)=\hat{\sigma}_{\epsilon}^{2}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{11}$
$\hat{\sigma}_{\epsilon}^{2}=\frac{1}{n-3} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}$

