Lecture 03: Classical Inferential Statistics I:

Basics and Confidence Intervals

3.1 Expectation and Covariance Matrix
of the Ordinary Least Squares (OLS)
Estimator

3.2 Confidence Intervals
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3.1. Ordinary Least Squares (OLS) Estimator:
Expectation and Covariance
» Only stochasticity: residual errors € according to y = X3 + €
» The OLS estimator is linear in y:

~

B = (X'X)"'X'y
= (X'X)'X'(XB+e€)
— B+ (X'X) " X'e

Expectation value

E(B)=E(B)+ (X'X) ' X'E(e) =8

The OLS estimator of parameter-linear models is un-
biased under the mild condition E(e) = 0 for all the
data points
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OLS estimator: variances and covariances

> GauB-Markow conditions — ¢ ~ i.i.dN(0,02) — 3 is normal
distributed

» In this case, the complete error characteristics are specified by
the expectation value and the variance-covariance matrix VB

def P P
v, @ E(B-8B-8))
linsert =B+ (X'X) 'X'e =] = E((X’X)’lx’e ((X’X)’IX’e)/)
[transpose and inversion rules -] = K ((X X )_IX/66,X (X X )_1)
[E(.) actsonlyon e =] = (X X )_1X ,E(GEI)X (X X )_1
[GauB-Markow —] = (X/X)_IX,O'?X (X/X)_1
[def inverse matrix —] = 0'62 (X X )_1

The variance-covariance matrix depends only on the values of the
exogenous factors!
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Results

» Ordinary least squares (OLS) estimator:

B=xXx)"

X'y

» Variance-Covariance matrix of the estimation errors (provided the
errors are i.i.d.) can be written in terms of the Hesse matrix H of the
objective function SSE:

Vo = E(B-B)B-8)) =0 (X'X)" =20°H ",

2
Hit = 5,08 |55 = 2XX)s

B=B

» Variances of estimation errors: V(Bj) =V
Vi

V ViiVik

> Distribution of the normalized estimation errors: 22=52 ~ N (0, 1)
G

> Correlation of estimation errors: Corr(ﬁj,Bk) =
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Estimation of the residual variance
The above cannot be applied directly since the residual variance o2 is

A~

unknown and must be estimated by the minimum SSE S(f):

P = e S i@ = 2

i

Under the GauB-Markow assumptions, this can be expressed as the
sum of squared Gaussians as follows (derivation for the experts):

(n—J-15*=@-y) (H-vy)
=(XB-y)(XB-y)
= (XB)(XB) ~ (XB)'y —y'(XB) +y'y
With following rule for scalar products: a’b = b'a it follows that the two
middle terms are equal. Replacing 3 = (X'X)~!X'y we see that,
interestingly, the first term is the negative of each of the two middle terms

resulting in
(n—J-16*=9y (1 - X(X'X)"'X")y
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Estimation of the residual variance (ctned)

Finally, we replace the observed endogeneous data vector y by the
model y = X B + € Notice: the true and, according to the GauB-Markow

assumptions, immutable parameter vector 3 is used herel!:

(n—J—-1)6*=(XB+e) (1 -XX'X)'X)(XB+e)
=€(1 - X(X'X)"1X"e
+2(X8) (1 = X(X'X)'XNe+AX'(1 —X(X'X)!

After doing the simplification, we realize that the second and third
term are each equal to zero, so we have the final result

(n—J—1)6*=¢€(1 —X(X'X)1X")e

With the GauB-Markow-assumptions, this is proportional to a sum of
(n — J — 1) squared Gaussians, i.e., a x?(n — J — 1) distributed
random variable
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Results if the variance needs to be estimated

> Estimated variance-covariance matrix:

~

V,;=20"H" =5 (X'X)"

P> The normalized approximate estimation errors are student-t
distributed (a Gaussian in the numerator and the square root of a
x? distributed random variable in the denominator):

BJ Bj
Vi

~T(n—-1-1J)
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Multivariate distribution function of B

The distribution of the errors A[ﬂ = [3 — 3 obeys a multivariate normal
distribution:

AB X'X AB

2
207

fﬁ(AB) X exp —%A[ﬁl v-! Aﬁ} = exp

Relation to the maximume-likelihood-method (— Lecture 07:)
Expand the SSE S(3) around 3 to second order:

S(8)~ S(B) ~ 508 H AB=AF X'X A

= fg(AB) X exp [—M

2
202

and with the estimated residual variance 62 = S(8)/(n — J — 1)

3 e | =T =) (5(8)
e[ 02270 (58]
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Example of correlated errors: modeling the demand for hotel

rooms
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Residual errors for fitted parameters

120 ~simple Hegression (Xp) =
Yest(Xq=1 star, xp)
Yest(X1=2 stars, X,)
100 = yaq(x4=3 stars, x5) n
- Vest(X1=4 stars, x,) -
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Effect of mis-fit parameters I: small effect if 3, and 3, have
opposite misfits

B4 and B, shifted by AB,and - AB,, respectively
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Effect of mis-fit parameters Il: small effect if 3, and 3, have
opposite misfits

B4 and B, shifted by - AB;and +AB,, respectively
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Effect of mis-fit parameters Ill: large effect if 3, and 3, have

Endogenous Variable y
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Effect of mis-fit parameters IV: large effect if 3, and 3, have

Endogenous Variable y
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, Endpogenous Vaérllable g 5
b 4 o =

—
kS

-y
]

3. Classical Inferential Statistics

3.1. OLS Expectation and Covariance

All this results in a negative correlation

between the estimation errors for 3, and 3,

Denslty hat(f) (hat(B);, hat(B),) | B4=38.21, B,=-0.95

-...corr(hat(B)q, hat(B)2))=-0.93 ...
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Econometrics Master's Course: Methods

Special case 1: No exogenous variables

» Model: y=0p+e:=pu+c¢
» System matrix: X = (1,1,...,1)’

» OLS estimator:
41
XX) =2 X'y=Y yi=nj
(X'X) = Y yi = n,

/BO_ﬂO _ y;:u \/7NN(0,1),
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Special case 2: Simple linear regression
» Model (with z1 = z): y = By + 1z + €
» System matrix:

1$1

_ . . / . n nx

1 z,

» OLS estimator (with s2 = 1/n(>" 2? — nZ)):

2 _
(X/X)flzi % —T X/y: ( ny )
’ > TiYi

o= (o AN Summ—nay s
' ns3’ nsj > TiYi a2 —nz s2’
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Simple linear regression (ctnd)

» Variance-covariance matrix (assuming w/o loss of generality
z=0):

V(B) = o2 (x’x)‘1202< é 0 )

2
nsZ

» Variance of the estimator g(x) (z is deterministic):

[\

2
V(§(x)) = V(Bo + A1) = Voo + 22Vay + 2aViy = = (1 N ﬂfg)

n
» Distribution of the estimator for y(x):
j(@) ~ N(y(@),V(i(2)))

If 02 has to be estimated by 62, the normalized estimators for
Bo, B1 and y(z) are ~ T'(n — 2).
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» If the GauB-Markov assumptions apply, the model estimation
errors gy(x) — y(x) are Gaussian distributed

> The expectation and variance depends on x; the standard error is
hyperbola-shaped.



£ TECHNISCHE
) OiveRsiAT

A Econometrics Master's Course: Methods 3. Classical Inferential Statistics 3.2 Confidence Intervals

3.2. Confidence Intervals:
where the Student-t distribution comes from

1
1
Sample 1 15 ;
Sample 2 | ° ! =)
| e !
T o
: |
o . &
Sample 8 t o
A f(0) :
f(p) | normal distribution
' t distribution
1
A
> B : k‘# t
-1 / 0 1 deviation
estimated in multiples
density f standard dev. of the estimated
standard error
Sample 1 — 5 N
Chi ~distribution B

A A

rZGB GB
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3.2 Confidence Intervals

Densities of standard normal vs. Student-t distribution

Density f
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3.2 Confidence Intervals

Calculation of the confidence intervals (Cl)

C|(ﬁc;) :,Bj (S [B] —A,Bj,éj +ABj] ,

> t1_o/2: Quantile (inverse of) the distribution function

» Cl “uncertainty principle":

Distribution Student (3)
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A~

ABj =t

(n—J—1) 4
1—a/2 O-Bj'

Higher sensitivity implies higher a error.

Confidence Interval for df=3 and a=0.05

Cl
F=0.025
F=0.975
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Hotel example: CI for the appraisal for “stars” 3
Confidence Interval (B4) for 0=0.05 (fu" mOdeI)

. Model: y(x) =3 ; Bjz; + €

Factors:
i xo =1, x1: #stars, xo: price

Density f

Confidence interval (Cl):
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Confidence Interval () for a=0.05

P ——— : 516{81—AB£Q),31+AB§Q)}

7 AR =t DNV (B)
= (8 = 62 [(xx)!

§ F:o.t?zls— V(ﬁl) = e [(X X) :|11
2 04 F=0.975 —— | 5 Lo )

8 02 — Oc = =3 Z:l (y’L - y’t)
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B - Estimator
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