Lecture 02: Linear (Regression) Models

2.1 Flow Chart of the Econometric Method
2.2 Model Specification
2.2.1 Functional specification
2.2.2 Statistical specification
2.2.3 Data specification
2.3 Ordinary Least Squares (OLS) Estimation

2.1 Flow Chart of the Econometric Method

2.1 Flow Chart of the Econometric Method

or

2.1 Flow Chart of the Econometric Method

2.2. Model Specification

As model specification, we denote the complete structural definition of the model and its consistency with the available data. There are three aspects:

> Functional specification: The model's exogenous and endogenous variables and the functional form in which they appear, particularly how the original exogenous variables $\tilde{\boldsymbol{x}}$ are expressed in terms of linear factors $x_{j}=g_{j}(\tilde{x})$ by fixed, generally nonlinear functions $g_{j}($. elements, e.g., residual are distributed and correlated with each other

2.2. Model Specification

As model specification, we denote the complete structural definition of the model and its consistency with the available data. There are three aspects:

- Functional specification: The model's exogenous and endogenous variables and the functional form in which they appear, particularly how the original exogenous variables $\tilde{\boldsymbol{x}}$ are expressed in terms of linear factors $x_{j}=g_{j}(\tilde{\boldsymbol{x}})$ by fixed, generally nonlinear functions $g_{j}($.
elements, are distributed and correlated with each other endogenous variables

2.2. Model Specification

As model specification, we denote the complete structural definition of the model and its consistency with the available data. There are three aspects:

- Functional specification: The model's exogenous and endogenous variables and the functional form in which they appear, particularly how the original exogenous variables $\tilde{\boldsymbol{x}}$ are expressed in terms of linear factors $x_{j}=g_{j}(\tilde{\boldsymbol{x}})$ by fixed, generally nonlinear functions $g_{j}($.
- Statistical specification: If the model contains stochastic elements, e.g., residual "error" terms we want to know how they are distributed and correlated with each other
can be used to analyze the data, for example, sufficient number of data sets, check if each set contains all the exogenous and endogenous variables

2.2. Model Specification

As model specification, we denote the complete structural definition of the model and its consistency with the available data. There are three aspects:

- Functional specification: The model's exogenous and endogenous variables and the functional form in which they appear, particularly how the original exogenous variables $\tilde{\boldsymbol{x}}$ are expressed in terms of linear factors $x_{j}=g_{j}(\tilde{\boldsymbol{x}})$ by fixed, generally nonlinear functions $g_{j}($.
- Statistical specification: If the model contains stochastic elements, e.g., residual "error" terms we want to know how they are distributed and correlated with each other
- The data specification should ensure that the available data can be used to analyze the data, for example, sufficient number of data sets, check if each set contains all the exogenous and endogenous variables

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:
> irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected. there is no bias and the estimation method is even officient However inferential conclucions may ho incorrect

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect analysis is not efficient and senerally gives erroneous

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
- mild: a mis-specification is not detected automatically but there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect
analysis is not efficient and generally gives erroneous conclusions (higher significance than in reality)

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
- mild: a mis-specification is not detected automatically but there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect
- medium: the results are still unbiased but the inferential analysis is not efficient and generally gives erroneous conclusions (higher significance than in reality)

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
- mild: a mis-specification is not detected automatically but there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect
- medium: the results are still unbiased but the inferential analysis is not efficient and generally gives erroneous conclusions (higher significance than in reality)
- nasty: the results are biased in an unpredictable way

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
- mild: a mis-specification is not detected automatically but there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect
- medium: the results are still unbiased but the inferential analysis is not efficient and generally gives erroneous conclusions (higher significance than in reality)
- nasty: the results are biased in an unpredictable way

WARNING

If the econometric model is not specified correctly, all sorts of problems occur, from irrelevant to nasty:

- irrelevant: some mis-specification are detected automatically during model estimation producing "zero/zero" errors and the like, or even self-corrected.
- mild: a mis-specification is not detected automatically but there is no bias and the estimation method is even efficient. However, inferential conclusions may be incorrect
- medium: the results are still unbiased but the inferential analysis is not efficient and generally gives erroneous conclusions (higher significance than in reality)
- nasty: the results are biased in an unpredictable way

There are lies, damned lies, and statistics!

2.2.1 Functional specification 1: relevant factors

- All relevant influencing factors should be taken into account (top), no one missed (bottom).

> Consequences of missing factors: a bias,

2.2.1 Functional specification 1: relevant factors

- All relevant influencing factors should be taken into account (top), no one missed (bottom).
- Consequences of missing factors: a bias, i.e., "junk in, junk out"
- Consequences of superfluous factors:

2.2.1 Functional specification 1: relevant factors

- All relevant influencing factors should be taken into account (top), no one missed (bottom).
- Consequences of missing factors: a bias, i.e., "junk in, junk out"
- Consequences of superfluous factors: no bias, higher estimation errors

2.2.1 Functional specification 1: relevant factors

- All relevant influencing factors should be taken into account (top), no one missed (bottom).
- Consequences of missing factors: a bias, i.e., "junk in, junk out"
- Consequences of superfluous factors: no bias, higher estimation errors
- Solution: check for superfluous factors: F-test; finding missing factors: your expertise!

Example: modeling the demand for hotel rooms

- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$ with the factors: $x_{0}=1, x_{1}$: proxy for quality $[\#$ stars]; x_{2} : price [€/night].
- The exogenous variables/factors are non-perfectly correlated:
- Endogenous variable: booking rate [\%]
- The demand is positively correlated with both the quality and the price (!)

Visualization of the fit quality

- Surface: model $\hat{y}(\boldsymbol{x})=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$

Visualization of the fit quality

- Surface: model $\hat{y}(\boldsymbol{x})=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$
- Black bullets: data (right graphics: twice mirrored)

Visualization of the fit quality

- Surface: model $\hat{y}(\boldsymbol{x})=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$
- Black bullets: data (right graphics: twice mirrored)
- OLS estimate: $\hat{\beta}_{0}=25.5, \hat{\beta}_{1}=38.2, \hat{\beta}_{2}=-0.953$.

Visualization of the fit quality

- Surface: model $\hat{y}(\boldsymbol{x})=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$
- Black bullets: data (right graphics: twice mirrored)
- OLS estimate: $\hat{\beta}_{0}=25.5, \hat{\beta}_{1}=38.2, \hat{\beta}_{2}=-0.953$.
- Blue or pink bars: residuals ϵ_{i} (≤ 0 if below the model plane)

Effect of the correlations between the exogenous variables

Functional specification 2: linearity

- The model should be linear which is not fulfilled here.
- Consequences of violation: "junk in, junk out"

Solution: A change of the independent variable into several factors would be a solution here, e.g.

Functional specification 2: linearity

- The model should be linear which is not fulfilled here.
- Consequences of violation: "junk in, junk out"
- Solution: A change of the independent variable into several factors would be a solution here, e.g. or $x_{0}^{\prime}=1, x_{1}^{\prime}=x, x_{2}^{\prime}=x^{2}$.

Functional specification 2: linearity

- The model should be linear which is not fulfilled here.
- Consequences of violation: "junk in, junk out"
- Solution: A change of the independent variable into several factors would be a solution here, e.g. $x_{0}^{\prime}=1, x_{1}^{\prime}=1 / x, x_{2}^{\prime}=x^{2}$ or $x_{0}^{\prime}=1, x_{1}^{\prime}=x, x_{2}^{\prime}=x^{2}$.

Example: fuel consumption

Assuming a constant efficiency chemical energy \rightarrow mechanical energy, the required fuel per $100 \mathrm{~km}, y$, is proportional to the driving resistance with the contributions

- Friction tire-road: contributions independent of the speed \tilde{x}_{1} and proportional to the mass \tilde{x}_{2}.
- Air drag: proportional to speed squared, \tilde{x}_{1}^{2}, and independent from mass
- Gradient: proportional to mass times gradient \tilde{x}_{3}

Example: fuel consumption

Assuming a constant efficiency chemical energy \rightarrow mechanical energy, the required fuel per $100 \mathrm{~km}, y$, is proportional to the driving resistance with the contributions

- Friction tire-road: contributions independent of the speed \tilde{x}_{1} and proportional to the mass \tilde{x}_{2}.
- Air drag: proportional to speed squared, \tilde{x}_{1}^{2}, and independent from mass
- Gradient: proportional to mass times gradient \tilde{x}_{3}

Example: fuel consumption

Assuming a constant efficiency chemical energy \rightarrow mechanical energy, the required fuel per $100 \mathrm{~km}, y$, is proportional to the driving resistance with the contributions

- Friction tire-road: contributions independent of the speed \tilde{x}_{1} and proportional to the mass \tilde{x}_{2}.
- Air drag: proportional to speed squared, \tilde{x}_{1}^{2}, and independent from mass
- Gradient: proportional to mass times gradient \tilde{x}_{3}

Example: fuel consumption

Assuming a constant efficiency chemical energy \rightarrow mechanical energy, the required fuel per $100 \mathrm{~km}, y$, is proportional to the driving resistance with the contributions

- Friction tire-road: contributions independent of the speed \tilde{x}_{1} and proportional to the mass \tilde{x}_{2}.
- Air drag: proportional to speed squared, \tilde{x}_{1}^{2}, and independent from mass
- Gradient: proportional to mass times gradient \tilde{x}_{3}

In addition, there is a base consumption rate (about 0.6 liters $/ \mathrm{h}$) when the car is idling/driving very slowly \Rightarrow contribution proportional to $1 /$ speed [liters $/ \mathrm{km}=$ liters $/ \mathrm{h}^{*} \mathrm{~h} / \mathrm{km}$] \Rightarrow model

Example: fuel consumption

Assuming a constant efficiency chemical energy \rightarrow mechanical energy, the required fuel per $100 \mathrm{~km}, y$, is proportional to the driving resistance with the contributions

- Friction tire-road: contributions independent of the speed \tilde{x}_{1} and proportional to the mass \tilde{x}_{2}.
- Air drag: proportional to speed squared, \tilde{x}_{1}^{2}, and independent from mass
- Gradient: proportional to mass times gradient \tilde{x}_{3}

In addition, there is a base consumption rate (about 0.6 liters $/ \mathrm{h}$) when the car is idling/driving very slowly \Rightarrow contribution proportional to $1 /$ speed [liters $/ \mathrm{km}=$ liters $/ \mathrm{h}^{*} \mathrm{~h} / \mathrm{km}$] \Rightarrow model

$$
y(\boldsymbol{x})=\sum_{j=1}^{4} \beta_{j} x_{j}+\epsilon, \quad x_{1}=\tilde{x}_{2}, \quad x_{2}=\tilde{x}_{1}^{2}, \quad x_{3}=\tilde{x}_{2} \tilde{x}_{3}, \quad x_{4}=\frac{1}{\tilde{x}_{1}}
$$

Transformation of the endogenous variable I

$30,000.00$

Transformation of time \tilde{x} to a factor $x=\exp (\tilde{x})$ would linearize the model but the fluctuations are not i.i.d (see statistical specification below)

Transformation of the endogenous variable II

100,000

Transformation of the endogenous variable $y \rightarrow u=\ln (y)$ and $x=\tilde{x}$ gives a properly specified linear model $u(x)=\beta_{0}+\beta_{1} x+\epsilon$, $\epsilon \sim$ i.i.d.

Functional specification 3: homogeneity

- Consequences: an untreated discontinuity ("structural break") in the space of the exogenous variables leads to a bias, i.e., junk in, junk out
- Solution: a dummy variable with values 0 before, 1 after the break.

Functional specification 3: homogeneity

- Consequences: an untreated discontinuity ("structural break") in the space of the exogenous variables leads to a bias, i.e., junk in, junk out
- Solution: a dummy variable with values 0 before, 1 after the break.

Functional specification 3: homogeneity

- Consequences: an untreated discontinuity ("structural break") in the space of the exogenous variables leads to a bias, i.e., junk in, junk out
- Solution: a dummy variable with values 0 before, 1 after the break.
? What could possibly cause a structural break?

Functional specification 3: homogeneity

- Consequences: an untreated discontinuity ("structural break") in the space of the exogenous variables leads to a bias, i.e., junk in, junk out
- Solution: a dummy variable with values 0 before, 1 after the break.
? What could possibly cause a structural break?
! 1. new data basis (GDR+West Germany \rightarrow Germany); 2. Redefinition of a variable (e.g., seriously injured from visit to hospital to overnight visit)

2.2.2 Statistical Specification 1. the residual ϵ has zero expectation

- The expectation value of the residual deviation should be $E(\epsilon)=0$.
- Consequences: None: The Ordinary Least Squares (OLS) method takes care for you. If only differences matter (discrete-choice theory), this is even not relevant at all.

2.2.2 Statistical Specification 1. the residual ϵ has zero expectation

- The expectation value of the residual deviation should be $E(\epsilon)=0$.
- Consequences: None: The Ordinary Least Squares (OLS) method takes care for you. If only differences matter (discrete-choice theory), this is even not relevant at all.

Statistical specification 2: homoskedasticity

- The residual ϵ should be homoscedastic (on the right), not heteroscedastic (left).
\rightarrow Consequences: if violated, OLS estimation remains unbiased but is no longer efficient (a medium error). Solution: Advanced methods, e.g. Weighted OLS; sometimes automatically resolved when transforming y as in the Dow-Jones evamnle

Statistical specification 2: homoskedasticity

- The residual ϵ should be homoscedastic (on the right), not heteroscedastic (left).
- Consequences: if violated, OLS estimation remains unbiased but is no longer efficient (a medium error).
- Solution: Advanced methods, e.g. weighted OLS; sometimes automatically resolved when transforming y as in the Dow-Jones example

Statistical specification 2: homoskedasticity

- The residual ϵ should be homoscedastic (on the right), not heteroscedastic (left).
- Consequences: if violated, OLS estimation remains unbiased but is no longer efficient (a medium error).
- Solution: Advanced methods, e.g. weighted OLS; sometimes automatically resolved when transforming y as in the Dow-Jones example

Statistical specification 3: no correlations

- There should be no correlation of ϵ relative to x_{i} or y (on the right). The model on the left is mis-specified.
> Consequences:
underestimation of estimation errors; possibly a small bias).
\qquad

Statistical specification 3: no correlations

- There should be no correlation of ϵ relative to x_{i} or y (on the right). The model on the left is mis-specified.
- Consequences: medium: (OLS estimator not efficient; underestimation of estimation errors; possibly a small bias).
> Solution: try identify a missing systematic factor such as a periodicity.

Statistical specification 3: no correlations

- There should be no correlation of ϵ relative to x_{i} or y (on the right). The model on the left is mis-specified.
- Consequences: medium: (OLS estimator not efficient; underestimation of estimation errors; possibly a small bias).
- Solution: try identify a missing systematic factor such as a periodicity.

Statistical specification 4: Gaussian distribution

- The residual ϵ should be Gaussian distributed (right), not, e.g., bimodally distributed (left).
- Consequences: a violation has mild consequences: OLS remains unbiased and efficient but the error estimates are wrong)
\qquad

Statistical specification 4: Gaussian distribution

- The residual ϵ should be Gaussian distributed (right), not, e.g., bimodally distributed (left).
- Consequences: a violation has mild consequences: OLS remains unbiased and efficient but the error estimates are wrong).
- All four statistical specifications can be summarized by requiring

Statistical specification 4: Gaussian distribution

- The residual ϵ should be Gaussian distributed (right), not, e.g., bimodally distributed (left).
- Consequences: a violation has mild consequences: OLS remains unbiased and efficient but the error estimates are wrong).
- All four statistical specifications can be summarized by requiring
$\epsilon \sim$ i.i.d. $N\left(0, \sigma^{2}\right)$ i.i.d.: identical independent distributions

Data specification 1: enough data

- There must be more data sets (containing all exogenous variables and the endogenous variale, each) than model parameters: $n>J+1$

Data specification 1: enough data

- There must be more data sets (containing all exogenous variables and the endogenous variale, each) than model parameters: $n>J+1$
- This means, the data should overdetermine the model which is the basis for fitting.
- Consequence of a violation: If $n=J+1$, the data determine the model exactly, i.e., it can be calibrated to zero residuals $\epsilon_{i}=0$: overfitting. This is still harmless since OLS will detect it for you (zero residuals) and the inferential analysis will return a "0/0 error" Consequence of satisfying the requirement borderline: there are only a few more data points than parameters a few degrees of freedom, the data specification is OK, the estimation unbiased and efficient but the

Data specification 1: enough data

- There must be more data sets (containing all exogenous variables and the endogenous variale, each) than model parameters: $n>J+1$
- This means, the data should overdetermine the model which is the basis for fitting.
- Consequence of a violation: If $n=J+1$, the data determine the model exactly, i.e., it can be calibrated to zero residuals $\epsilon_{i}=0$: overfitting. This is still harmless since OLS will detect it for you (zero residuals) and the inferential analysis will return a "0/0 error"
 a few degrees of freedom, the data specification is OK, the estimation unhiased and efficient but the

Data specification 1: enough data

- There must be more data sets (containing all exogenous variables and the endogenous variale, each) than model parameters: $n>J+1$
- This means, the data should overdetermine the model which is the basis for fitting.
- Consequence of a violation: If $n=J+1$, the data determine the model exactly, i.e., it can be calibrated to zero residuals $\epsilon_{i}=0$: overfitting. This is still harmless since OLS will detect it for you (zero residuals) and the inferential analysis will return a "0/0 error"
- Consequence of satisfying the requirement borderline: If there are only a few more data points than parameters, i.e., only a few degrees of freedom, the data specification is OK, the estimation unbiased and efficient but the estimation errors are big
- Solution: Get more data

Data specification 1: enough data

- There must be more data sets (containing all exogenous variables and the endogenous variale, each) than model parameters: $n>J+1$
- This means, the data should overdetermine the model which is the basis for fitting.
- Consequence of a violation: If $n=J+1$, the data determine the model exactly, i.e., it can be calibrated to zero residuals $\epsilon_{i}=0$: overfitting. This is still harmless since OLS will detect it for you (zero residuals) and the inferential analysis will return a "0/0 error"
- Consequence of satisfying the requirement borderline: If there are only a few more data points than parameters, i.e., only a few degrees of freedom, the data specification is OK, the estimation unbiased and efficient but the estimation errors are big
- Solution: Get more data ...

Data specification 2: no multicollinearity

- A given exogenous variable must not be represented as a linear combination of other exogenous variables. Otherwise, the data matrix is singular
\rightarrow However, nonperfect correlations $\neq \pm 1$ are allowed.

Data specification 2: no multicollinearity

- A given exogenous variable must not be represented as a linear combination of other exogenous variables. Otherwise, the data matrix is singular
- However, nonperfect correlations $\neq \pm 1$ are allowed.
- Nonperfect correlations appear regularly, e.g., price vs quality

Consequences: OLS detects a perfect multicollinearity for you by a "division by zero" error. A nearly perfect multicollinearity will lead to

Data specification 2: no multicollinearity

- A given exogenous variable must not be represented as a linear combination of other exogenous variables. Otherwise, the data matrix is singular
- However, nonperfect correlations $\neq \pm 1$ are allowed.
- Nonperfect correlations appear regularly, e.g., price vs quality
- Consequences: OLS detects a perfect multicollinearity for you by a "division by zero" error. A nearly perfect multicollinearity will lead to

Data specification 2: no multicollinearity

- A given exogenous variable must not be represented as a linear combination of other exogenous variables. Otherwise, the data matrix is singular
- However, nonperfect correlations $\neq \pm 1$ are allowed.
- Nonperfect correlations appear regularly, e.g., price vs quality
- Consequences: OLS detects a perfect multicollinearity for you by a "division by zero" error. A nearly perfect multicollinearity will lead to large estimation errors

If all items of all three specification categories are fulfilled, the econometric problem satisfies the Gauß-Markov assumptions

Data specification 2: no multicollinearity

- A given exogenous variable must not be represented as a linear combination of other exogenous variables. Otherwise, the data matrix is singular
- However, nonperfect correlations $\neq \pm 1$ are allowed.
- Nonperfect correlations appear regularly, e.g., price vs quality
- Consequences: OLS detects a perfect multicollinearity for you by a "division by zero" error. A nearly perfect multicollinearity will lead to large estimation errors

If all items of all three specification categories are fulfilled, the econometric problem satisfies the Gauß-Markov assumptions

How to detect multicollinearity

- Assume n data sets $\left\{x_{i 0}, \ldots, x_{i j}, \ldots, x_{i J}\right\}, i=1, \ldots, n$ (the data sets also contain the endogenous variable but it is not relevant here)
- $x_{i j}$ is the $j^{\text {th }}$ exogenous factor in the $i^{\text {th }}$ data set
- Multicollinearity exists if there is one exogenous factor x_{k} that can be expressed as a linear combination of all other factors $j \neq k$ in all data sets:

How to detect multicollinearity

- Assume n data sets $\left\{x_{i 0}, \ldots, x_{i j}, \ldots, x_{i J}\right\}, i=1, \ldots, n$ (the data sets also contain the endogenous variable but it is not relevant here)
- $x_{i j}$ is the $j^{\text {th }}$ exogenous factor in the $i^{\text {th }}$ data set
- Multicollinearity exists if there is one exogenous factor x_{k} that can be expressed as a linear combination of all other factors $j \neq k$ in all data sets:

$$
x_{i k}=\sum_{j \neq k} c_{j} x_{i j} \quad \forall i=1, \ldots, n, \quad \text { constant } c_{j}
$$

\rightarrow A linear relation $x_{2}=$
is easy to detect but this is not the case for more complex relationships

How to detect multicollinearity

- Assume n data sets $\left\{x_{i 0}, \ldots, x_{i j}, \ldots, x_{i J}\right\}, i=1, \ldots, n$ (the data sets also contain the endogenous variable but it is not relevant here)
- $x_{i j}$ is the $j^{\text {th }}$ exogenous factor in the $i^{\text {th }}$ data set
- Multicollinearity exists if there is one exogenous factor x_{k} that can be expressed as a linear combination of all other factors $j \neq k$ in all data sets:

$$
x_{i k}=\sum_{j \neq k} c_{j} x_{i j} \quad \forall i=1, \ldots, n, \quad \text { constant } c_{j}
$$

- A linear relation $x_{2}=c_{0} x_{1}$ is easy to detect but this is not the case for more complex relationships
\rightarrow Solution: Check whether the descriptive variance-covariance matrix

How to detect multicollinearity

- Assume n data sets $\left\{x_{i 0}, \ldots, x_{i j}, \ldots, x_{i J}\right\}, i=1, \ldots, n$ (the data sets also contain the endogenous variable but it is not relevant here)
- $x_{i j}$ is the $j^{\text {th }}$ exogenous factor in the $i^{\text {th }}$ data set
- Multicollinearity exists if there is one exogenous factor x_{k} that can be expressed as a linear combination of all other factors $j \neq k$ in all data sets:

$$
x_{i k}=\sum_{j \neq k} c_{j} x_{i j} \quad \forall i=1, \ldots, n, \quad \text { constant } c_{j}
$$

- A linear relation $x_{2}=c_{0} x_{1}$ is easy to detect but this is not the case for more complex relationships
- Solution: Check whether the descriptive variance-covariance matrix

$$
S_{j k}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)
$$

has the full rank $J+1$, i.e., $\operatorname{det} \mathbf{S} \neq 0$

How to detect multicollinearity

- Assume n data sets $\left\{x_{i 0}, \ldots, x_{i j}, \ldots, x_{i J}\right\}, i=1, \ldots, n$ (the data sets also contain the endogenous variable but it is not relevant here)
- $x_{i j}$ is the $j^{\text {th }}$ exogenous factor in the $i^{\text {th }}$ data set
- Multicollinearity exists if there is one exogenous factor x_{k} that can be expressed as a linear combination of all other factors $j \neq k$ in all data sets:

$$
x_{i k}=\sum_{j \neq k} c_{j} x_{i j} \quad \forall i=1, \ldots, n, \quad \text { constant } c_{j}
$$

- A linear relation $x_{2}=c_{0} x_{1}$ is easy to detect but this is not the case for more complex relationships
- Solution: Check whether the descriptive variance-covariance matrix

$$
S_{j k}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)
$$

has the full rank $J+1$, i.e., $\operatorname{det} \mathbf{S} \neq 0$

- For $n<J+1$, this is not satisfied trivially

Data specification 2: example

- The normalized demand y_{i} for public transport in city i depends on the price $x_{i 1}$ and the quality $x_{i 2}$ (proxy: speed) of the service.

Data specification 2: example

- The normalized demand y_{i} for public transport in city i depends on the price $x_{i 1}$ and the quality $x_{i 2}$ (proxy: speed) of the service.
- Parameters: intercept β_{0}, price sensitivity β_{1}, appraisal for quality β_{2}.

Data specification 2: example

- The normalized demand y_{i} for public transport in city i depends on the price $x_{i 1}$ and the quality $x_{i 2}$ (proxy: speed) of the service.
- Parameters: intercept β_{0}, price sensitivity β_{1}, appraisal for quality β_{2}.
- Price and quality are correlated but not perfectly so.

Data specification 2: example

- The normalized demand y_{i} for public transport in city i depends on the price $x_{i 1}$ and the quality $x_{i 2}$ (proxy: speed) of the service.
- Parameters: intercept β_{0}, price sensitivity β_{1}, appraisal for quality β_{2}.
- Price and quality are correlated but not perfectly so.
- This model structure is quite generic for products and services.

2.3. Ordinary Least Squares (OLS) Estimation

Given is a linear model of the form

satisfying the Gauß-Markow specifications (the Gaussian distribution of the ϵ_{i} is not required, here)

Given is also data in the form of n multidimensional data pointscontaining all observations and satisfying the Gauß-Markow specifications as well

2.3. Ordinary Least Squares (OLS) Estimation

- Given is a linear model of the form

$$
y(\boldsymbol{x})=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon=\hat{y}(\boldsymbol{x})+\epsilon, \quad \epsilon \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

satisfying the Gauß-Markow specifications (the Gaussian distribution of the ϵ_{i} is not required, here)
Given is also data in the form of n multidimensional data points containing all observations and satisfying the Gauß-Markow specifications as well:
\qquad
the parameters

2.3. Ordinary Least Squares (OLS) Estimation

- Given is a linear model of the form

$$
y(\boldsymbol{x})=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon=\hat{y}(\boldsymbol{x})+\epsilon, \quad \epsilon \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

satisfying the Gauß-Markow specifications (the Gaussian distribution of the ϵ_{i} is not required, here)

- Given is also data in the form of n multidimensional data points containing all observations and satisfying the Gauß-Markow specifications as well:

$$
\left\{\boldsymbol{p}_{i}=\left(x_{i 0}, \ldots, x_{i J}, y_{i}\right)^{\prime}, \quad i=1, \ldots, n\right\}
$$Searched for is a parameter estimator β

squared errors
the parameters:

2.3. Ordinary Least Squares (OLS) Estimation

- Given is a linear model of the form

$$
y(\boldsymbol{x})=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon=\hat{y}(\boldsymbol{x})+\epsilon, \quad \epsilon \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

satisfying the Gauß-Markow specifications (the Gaussian distribution of the ϵ_{i} is not required, here)

- Given is also data in the form of n multidimensional data points containing all observations and satisfying the Gauß-Markow specifications as well:

$$
\left\{\boldsymbol{p}_{i}=\left(x_{i 0}, \ldots, x_{i J}, y_{i}\right)^{\prime}, \quad i=1, \ldots, n\right\}
$$

- Searched for is a parameter estimator $\hat{\boldsymbol{\beta}}$ minimizing the sum of squared errors between data and model prediction with respect to the parameters:

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} S(\boldsymbol{\beta})
$$

where

$$
S(\boldsymbol{\beta})=\boldsymbol{\epsilon}^{\prime} \boldsymbol{\epsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) .
$$

Determining the OLS estimator

$$
S=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Taking the derivative $\frac{\partial}{\partial \boldsymbol{\beta}}$ respecting $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{a}\right)=\boldsymbol{a}$ and $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$ with $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ symmetric:

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Taking the derivative $\frac{\partial}{\partial \boldsymbol{\beta}}$ respecting $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{a}\right)=\boldsymbol{a}$ and $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$ with $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ symmetric:

$$
\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=0-2 \mathbf{X}^{\prime} \boldsymbol{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Taking the derivative $\frac{\partial}{\partial \boldsymbol{\beta}}$ respecting $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{a}\right)=\boldsymbol{a}$ and $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$ with $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ symmetric:

$$
\begin{aligned}
& \frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=0-2 \mathbf{X}^{\prime} \boldsymbol{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0 \\
& \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \boldsymbol{y}
\end{aligned}
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Taking the derivative $\frac{\partial}{\partial \boldsymbol{\beta}}$ respecting $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{a}\right)=\boldsymbol{a}$ and $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$ with $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ symmetric:

$$
\begin{gathered}
\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=0-2 \mathbf{X}^{\prime} \boldsymbol{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0 \\
\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \boldsymbol{y} \quad \mid \cdot\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{gathered}
$$

Determining the OLS estimator

$$
\begin{aligned}
S & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
{[\text { distributivity } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-(\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
{[\text { transpose rule } \rightarrow] } & =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \boldsymbol{y}\right)+\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}
\end{aligned}
$$

Taking the derivative $\frac{\partial}{\partial \boldsymbol{\beta}}$ respecting $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{a}\right)=\boldsymbol{a}$ and $\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$ with $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ symmetric:

$$
\begin{gathered}
\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=0-2 \mathbf{X}^{\prime} \boldsymbol{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0 \\
\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \boldsymbol{y} \quad \mid \cdot\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{gathered}
$$

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

