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2.2. Model Specification

As model specification, we denote the complete structural definition
of the model and its consistency with the available data. There are
three aspects:

I Functional specification: The model’s exogenous and
endogenous variables and the functional form in which they
appear, particularly how the original exogenous variables x̃ are
expressed in terms of linear factors xj = gj(x̃) by fixed,
generally nonlinear functions gj(.)

I Statistical specification: If the model contains stochastic
elements, e.g., residual “error” terms we want to know how they
are distributed and correlated with each other

I The data specification should ensure that the available data
can be used to analyze the data, for example, sufficient number
of data sets, check if each set contains all the exogenous and
endogenous variables
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WARNING

If the econometric model is not specified correctly, all sorts of
problems occur, from irrelevant to nasty:

I irrelevant: some mis-specification are detected
automatically during model estimation producing
“zero/zero” errors and the like, or even self-corrected.

I mild: a mis-specification is not detected automatically but
there is no bias and the estimation method is even
efficient. However, inferential conclusions may be incorrect

I medium: the results are still unbiased but the inferential
analysis is not efficient and generally gives erroneous
conclusions (higher significance than in reality)

I nasty: the results are biased in an unpredictable way

Junk in, junk out!
There are lies,
damned lies, and
statistics!
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2.2.1 Functional specification 1: relevant factors

I All relevant influencing factors should be taken into account (top), no
one missed (bottom).

I Consequences of missing factors: a bias, i.e., “junk in, junk out”

I Consequences of superfluous factors: no bias, higher estimation
errors

I Solution: check for superfluous factors: F-test; finding missing factors:
your expertise!
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Example: modeling the demand for hotel rooms

I y = β0 + β1x1 + β2x2 + ε with the
factors: x0 = 1, x1: proxy for quality [#
stars]; x2: price [e/night].

I The exogenous variables/factors are
non-perfectly correlated:

I Endogenous variable: booking rate [%]

I The demand is positively correlated with
both the quality and the price (!)
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Visualization of the fit quality

I Surface: model ŷ(x) = β̂0 + β̂1x1 + β̂2x2

I Black bullets: data (right graphics: twice mirrored)

I OLS estimate: β̂0 = 25.5, β̂1 = 38.2, β̂2 = −0.953.

I Blue or pink bars: residuals εi (≤ 0 if below the model plane)
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Effect of the correlations between the exogenous variables
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Functional specification 2: linearity

I The model should be linear which is not fulfilled here.

I Consequences of violation: “junk in, junk out”

I Solution: A change of the independent variable into several
factors would be a solution here, e.g. x′0 = 1, x′1 = 1/x, x′2 = x2

or x′0 = 1, x′1 = x, x′2 = x2.
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Example: fuel consumption

Assuming a constant efficiency chemical energy → mechanical energy,
the required fuel per 100 km, y, is proportional to the driving
resistance with the contributions

I Friction tire-road: contributions independent of the speed x̃1 and
proportional to the mass x̃2.

I Air drag: proportional to speed squared, x̃21, and independent
from mass

I Gradient: proportional to mass times gradient x̃3

In addition, there is a base consumption rate (about 0.6 liters/h) when
the car is idling/driving very slowly ⇒ contribution proportional to
1/speed [liters/km=liters/h * h/km] ⇒ model

y(x) =

4∑
j=1

βjxj + ε, x1 = x̃2, x2 = x̃21, x3 = x̃2x̃3, x4 =
1

x̃1
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Transformation of the endogenous variable I

Transformation of time x̃ to a factor x = exp(x̃) would lin-
earize the model but the fluctuations are not i.i.d (see statistical
specification below)
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Transformation of the endogenous variable II

Transformation of the endogenous variable y → u = ln(y) and
x = x̃ gives a properly specified linear model u(x) = β0+β1x+ε,
ε ∼ i.i.d.
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Functional specification 3: homogeneity

I Consequences: an untreated discontinuity (“structural break”) in the
space of the exogenous variables leads to a bias, i.e., junk in, junk out

I Solution: a dummy variable with values 0 before, 1 after the break.

? What could possibly cause a structural break?

! 1. new data basis (GDR+West Germany → Germany); 2. Redefinition of a variable (e.g., seriously injured from
visit to hospital to overnight visit)
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2.2.2 Statistical Specification
1. the residual ε has zero expectation

I The expectation value of the residual deviation should be
E(ε) = 0.

I Consequences: None: The Ordinary Least Squares (OLS)
method takes care for you. If only differences matter
(discrete-choice theory), this is even not relevant at all.
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Statistical specification 2: homoskedasticity

I The residual ε should be homoscedastic (on the right), not
heteroscedastic (left).

I Consequences: if violated, OLS estimation remains unbiased
but is no longer efficient (a medium error).

I Solution: Advanced methods, e.g. weighted OLS; sometimes
automatically resolved when transforming y as in the Dow-Jones
example
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Statistical specification 3: no correlations

I There should be no correlation of ε relative to xi or y (on the
right). The model on the left is mis-specified.

I Consequences: medium: (OLS estimator not efficient;
underestimation of estimation errors; possibly a small bias).

I Solution: try identify a missing systematic factor such as a
periodicity.
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Statistical specification 4: Gaussian distribution

I The residual ε should be Gaussian distributed (right), not, e.g.,
bimodally distributed (left).

I Consequences: a violation has mild consequences: OLS remains
unbiased and efficient but the error estimates are wrong).

I All four statistical specifications can be summarized by requiring

ε ∼ i.i.d.N(0, σ2) i.i.d.: identical independent distributions
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Data specification 1: enough data

I There must be more data sets (containing all exogenous variables
and the endogenous variale, each) than model parameters:
n > J + 1

I This means, the data should overdetermine the model which is
the basis for fitting.

I Consequence of a violation: If n = J + 1, the data determine
the model exactly, i.e., it can be calibrated to zero residuals
εi = 0: overfitting. This is still harmless since OLS will detect it
for you (zero residuals) and the inferential analysis will return a
“0/0 error”

I Consequence of satisfying the requirement borderline: If
there are only a few more data points than parameters, i.e., only
a few degrees of freedom, the data specification is OK, the
estimation unbiased and efficient but the estimation errors are
big

I Solution: Get more data ...
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Data specification 2: no multicollinearity

I A given exogenous variable must not be represented as a linear
combination of other exogenous variables. Otherwise, the data matrix
is singular

I However, nonperfect correlations 6= ±1 are allowed.

I Nonperfect correlations appear regularly, e.g., price vs quality

I Consequences: OLS detects a perfect multicollinearity for you by
a “division by zero” error. A nearly perfect multicollinearity will lead to
large estimation errors

If all items of all three specification categories are fulfilled,
the econometric problem satisfies the Gauß-Markov as-
sumptions



Econometrics Master’s Course: Methods 2. Linear (Regression) Models 2.2.2 Statistical specification

How to detect multicollinearity

I Assume n data sets {xi0, ..., xij , ..., xiJ}, i = 1, ..., n (the data sets
also contain the endogenous variable but it is not relevant here)

I xij is the jth exogenous factor in the ith data set

I Multicollinearity exists if there is one exogenous factor xk that can be
expressed as a linear combination of all other factors j 6= k in all data
sets:

xik =
∑
j 6=k

cjxij ∀i = 1, ..., n, constant cj

I A linear relation x2 = c0x1 is easy to detect but this is not the case for
more complex relationships

I Solution: Check whether the descriptive variance-covariance matrix

Sjk =
1

n

n∑
i=1

(xij − x̄j)(xik − x̄k)

has the full rank J + 1, i.e., det S 6= 0

I For n < J + 1, this is not satisfied trivially
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Data specification 2: example

I The normalized demand yi for public transport in city i depends
on the price xi1 and the quality xi2 (proxy: speed) of the service.

I Parameters: intercept β0, price sensitivity β1, appraisal for
quality β2.

I Price and quality are correlated but not perfectly so.

I This model structure is quite generic for products and services.
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2.3. Ordinary Least Squares (OLS) Estimation
I Given is a linear model of the form

y(x) = β′x+ ε = ŷ(x) + ε, ε ∼ i.i.d.N(0, σ2)

satisfying the Gauß-Markow specifications (the Gaussian
distribution of the εi is not required, here)

I Given is also data in the form of n multidimensional data points
containing all observations and satisfying the Gauß-Markow
specifications as well:{

pi = (xi0, ..., xiJ , yi)
′, i = 1, ..., n

}
I Searched for is a parameter estimator β̂ minimizing the sum of

squared errors between data and model prediction with respect to
the parameters:

β̂ = arg minβ S(β)

where
S(β) = ε′ε = (y − Xβ)′(y − Xβ).
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Determining the OLS estimator

S = (y − Xβ)′ (y − Xβ)

[distributivity →] = y′y − (Xβ)′y − y′Xβ + (Xβ)′Xβ

[transpose rule →] = y′y − β′X ′y − y′Xβ + β′X ′Xβ

[transpose rule →] = y′y − 2β′(X ′y) + β′
(
X ′X

)
β

Taking the derivative ∂
∂β respecting ∂

∂β (β′a) = a and
∂
∂β (β′Aβ) = (A + A ′)β with A = X ′X symmetric:

∂S(β)

∂β
= 0− 2X ′y + 2X ′Xβ

!
= 0

X ′Xβ = X ′y | · (X ′X )−1

β̂ =
(
X ′X

)−1
X ′y
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