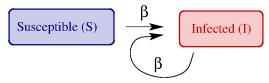
Traffic Econometrics Master's Course


Lecture 01a: Covid-19 Dynamics

Simulation der Covid-19 Pandemie Deutschland	Reproduktionszahl Ro 1.32 60 0 foot Ansteckungsstart 2 Tage 8 Tage Ansteckungsende 8 Tage 5 Tag Deutschland v Simulation (kum) v Hellfeld 18.64 % 5 Tag 5 Tag
5000 Insgesamt positiv Getestete (in 1000) Insg. Genesene unter den Getesteten (in 1000) Insgesamt Gestorbene (in 100) Dirchs1a.1. Simple Macroscopic Models (SI, SIR, SEIR,	
	RM)
 1a.2 Microscopic Models 1a.3 Down to Earth: Data-Related Issues 1a.4 Simulation Corona-simulation.de 	
War borrow h	^{10) 10} مار ¹⁰ م

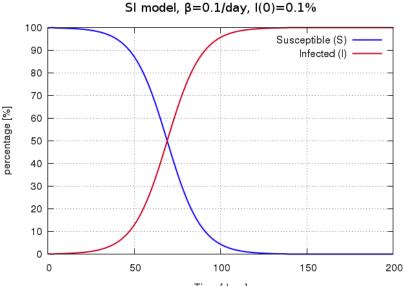
1a.1 Simple macroscopic models I: SI model

Compartemental models: consider different status such as susceptible, infected, or recovered and transitions between them

- As in any macroscopic model on infection dynamics, the basic dynamic quantities are *percentages of the population* (e.g., of a country) rather than individual persons
- Scale separation: The *infection dynamics* is much faster than the rest of the *population dynamics* (births, "normal" deaths, in- and outwards directed migration/moves) ⇒ population number N = const.
- ► Two compartiments: any person can be either susceptible to infection (S), or already infected (I) which includes actually ill, recovered, or dead. Particularly, there is no reverse transition I→S

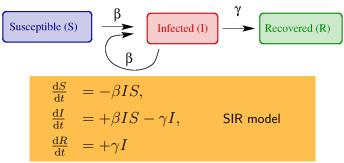
SI model II

- All infected persons become *contagious instantaneously* and remain so all the time (notice the inconsistency to the point above)
- The rate of contagion β (# persons per time unit if everybody else is S) remains constant

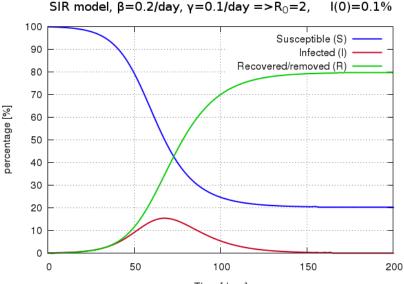

- $S = N_S/N$: fraction of susceptible
- ▶ $I = N_I/N$: fraction of infected

• $\frac{d}{dt}(S+I) = 0 \Leftrightarrow$ conservation of population number N = const. Rewrite with S + I = 1:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I (1 - I)$$

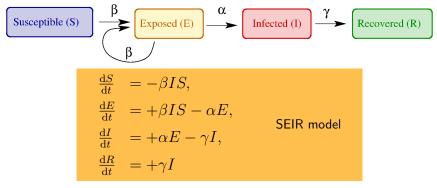

 \Rightarrow classical model for limited growth with saturation 1

SI model III: Simulation


SIR model

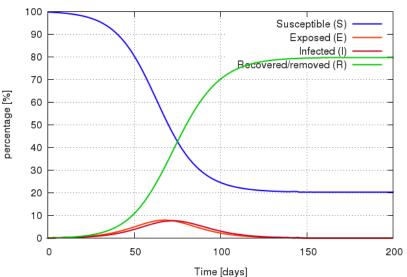
- \blacktriangleright Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

- Conservation of the population number: S + I + R = 1
- ? Show that the initial reproduction number is given by $R_0=eta/\gamma$
- Initially (S = 1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\tau_R \sim \text{Exp}(\gamma)$, so the average #infected people = $\beta E(\tau_R) = \beta/\gamma$


SI and SIR models: simulation

Time [days]

SEIR model


- Adds to the SIR model a finite *incubation time* τ_I ~ Exp(α) where people are infected but not yet contagious ("exposed", E)
- Triple chain with S + E + I + R = 1:

- ? Show that $R_0 = \beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau = (1/\gamma + 1\alpha)/\log_2(R_0)$
- $\label{eq:rescaled} R_0 \text{ as in the SIR model. The average time for passing an infection is the sum <math display="inline">1/\gamma + 1\alpha)$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublings.

SIR vs. SEIR model simulations

SEIR, β =0.4/day, γ = α =0.2/day =>R₀=2, E(0)=I(0)=0.1%

SEIR model with seasons (winter is "flu" time)

 \Rightarrow make the reproduction number $R_0(t)$ time dependent

 \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$

SEIR model, $\beta = \gamma R_0(t)$, $\gamma = \alpha = 0.2/day$, E(0) = I(0) = 0.1%4 4 Reproduction rate Ro 3.5 3.5 Susceptible (S) -100*Exposed (E) 3 3 100*Infected (I) 2.5 Recovered/removed (R) S,E,I, and R 2.5 ñ 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0 50 100 150 200 250 300 350 400 450

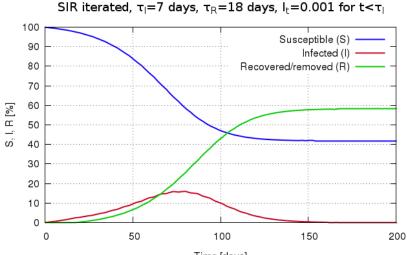
Time [days] since March01

Iterated map models

- The SI, SIR, SEIR models were ordinary differential equations (ODEs)
- Another more direct approach are iterated maps: models for time evolution by classical model chaining
- can be interpreted as numerical solutions of ODEs but they are more flexible allowing "real" memory, e.g., truly nonzero incubation time instead of an exponential distributed one
- Of course, this also means we need initialize all past values within the memory time

TECHNISCHE UNIVERSITAT

Iterated SIR model with memory (SIRM)


- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- $\Rightarrow\,$ need history of all fractions $I_{t'}$ of persons infected <code>exactly</code> at day $t' \leq t$
- \blacktriangleright The person recovers exactly τ_R days after infection
- \Rightarrow The total fraction of ill persons (*active cases*) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{split} I_t &= R_0 S(t-\tau_I) I_{t-\tau_J}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{split}$$
 SIR model with memory

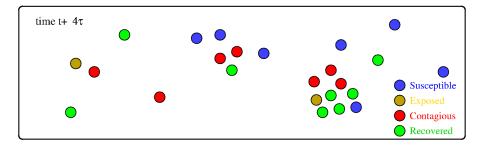
Notice that the recovery does not influence the infection process since only infection day τ_I is contagious

Simulation of the SIR model with memory

Time [days]

1a.2 Microscopic Models

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)


- ► The health status of each person i is exactly one out of a set, e.g. status ∈ { S, E, I, R }
- ▶ Transition $S_i \rightarrow E_i$ if an S person *i* is sufficiently close to an I person *j* sufficiently long, e.g.

 $S_i(t) \to E_i(t)$ if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\forall \,t': t - \tau_E \le t' \le t$

- Transition to an I person after an incubation time τ_I
- Transition to an R person after a time period $\tau_R > \tau_I$

So the pandemic micromodel is easy: It gets interesting when adding a **particle dynamics model** for the motion of the people to model, e.g., *superspreading events*

Microscopic example

- Time t: superspreading event
- Time $t + \tau$: three people infected in the middle group
- Time $t + 2\tau$: one of the newly infected moves to the other group
- Time $t + 3\tau$: incubation time over (also at the left group)
- Time $t + 4\tau$: two infections in two groups

1a.3 Down to reality/econometrics: what can be observed?

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

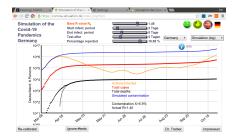

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \le t$

Many uncertainties:

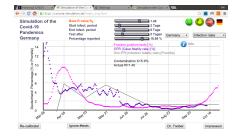

- ▶ The tests have an imperfect sensitivity $P(\text{positive}|\text{infected}) \approx 99\%$
- ▶ ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$
- Different/inconsistent definitions of a "Covid-19 death" event
- ▶ There is a high number of untested and potentially ill people \Rightarrow high number of unreported cases, probably $\gg N_T$
- The fraction of reported cases depends on the number of tests via a monotonously increasing but otherwise unknown function

Corona-simulation.de (as of Oct 30, 2020)

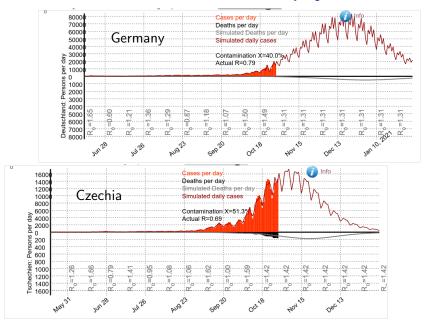
Interactive data-driven simulator based on an extended SIRM model



Features I: different countries



Features II: different windows



Features III: scenario-based projections

Features III: "lockdown" shifts "wave"

Features IV: sensitivity tests, e.g., ramping up #tests

TECHNISCHE UNIVERSITAT

Summary/take-home messages

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- Do not confuse/mix proxies with the real quantities, e.g., positive tests vs. infection events. Also check how well the proxy represents the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the result