Traffic Flow Dynamics and Simulation

SS 2024, Tutorial 8, page 1

Problem 8.1: Rules of thumb for the safe gap and braking distance

(a) In Continental European countries, one learns in driving schools the following rule: „The safe gap should be at least half the reading of the speedometer". Translate this rule into a safe time gap rule.
(b) A common US rule for the safe gap is the following: „Leave one car length for every ten miles per hour of speed". Another rule says „Leave a time gap of two seconds". Compare these two rules assuming a typical car length of 15 ft . For which car length are both rules equivalent?
(c) A rule of thumb for the braking distance says „Speed squared and divided by 100 ". If speed is measured in km / h, what braking deceleration is implied by this rule?

Problem 8.2: A simple model for emergency braking maneuvers

Critical situations requiring emergency braking maneuvers can be described by following microscopic model:

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}= \begin{cases}0 & \text { if } t<T_{r} \\ -b_{\max } & \text { otherwise }\end{cases}
$$

(a) Give an intuitive meaning of the parameters T_{r} and $b_{\max }$.
(b) Calculate the braking distance and the overall stopping distance for initial speeds of $50 \mathrm{~km} / \mathrm{h}$ and $70 \mathrm{~km} / \mathrm{h}$ assuming $b_{\text {max }}=8 \mathrm{~m} / \mathrm{s}^{2}$ and $T_{r}=1 \mathrm{~s}$.
Hint: The overall stopping distance is composed of the braking distance, i.e., the vehicle displacement during the actual braking phase, and the reaction distance the vehicle travels during the reaction time of the driver.
(c) This is a task from the theoretical driver's license MC test sheets Imagine a situation where a child suddenly runs into the road from a hidden position behind a vehicle. A driver driving according to the above model just manages to stop if his or her initial speed is $50 \mathrm{~km} / \mathrm{h}$. At what speed would this driver collide with the child if the initial speed is $70 \mathrm{~km} / \mathrm{h}$ and the situation is otherwise unchanged? (please tick)
$\bigcirc 20 \mathrm{~km} / \mathrm{h}$$40 \mathrm{~km} / \mathrm{h}$
$\bigcirc 50 \mathrm{~km} / \mathrm{h}$
$\bigcirc 60 \mathrm{~km} / \mathrm{h}$

Note: Assume the reaction time $T_{r}=1 \mathrm{~s}$ and maximum braking deceleration $b_{\max }=8 \mathrm{~m} / \mathrm{s}^{2}$ from part (b)

Problem 8.3: OVM acceleration on an empty road

Consider a single vehicle on an empty road whose acceleration is described by the Optimal Velocity Model

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{0}-v}{\tau}
$$

assuming the initial conditions $x(0)=0$, and $v(0)=0$.
(a) At which time does the vehicle reach its maximum acceleration? What is its value?
(b) Determine the parameter τ if the desired speed is given by $120 \mathrm{~km} / \mathrm{h}$ and the maximum acceleration by $2 \mathrm{~m} / \mathrm{s}^{2}$.
(c) Solve this simple differential equation by the ansatz

$$
v(t)=a+b e^{-t / \tau}
$$

(the exponent $-t / \tau$ comes from the "homogeneous" differential equation $\frac{\mathrm{d} v}{\mathrm{~d} t}=-v / \tau$ and general "cooking-book" rules in solving differential equations)
(d) Give the acceleration profile
(e) At which time does the vehicle reach a speed of $100 \mathrm{~km} / \mathrm{h}$?

